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Proof Automation for Linearizability in Separation Logic

IKE MULDER, Radboud University Nijmegen, The Netherlands
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Recent advances in concurrent separation logic enabled the formal verification of increasingly sophisticated

fine-grained (i.e., lock-free) concurrent programs. For such programs, the golden standard of correctness is

linearizability, which expresses that concurrent executions always behave as some valid sequence of sequential

executions. Compositional approaches to linearizability (such as contextual refinement and logical atomicity)

make it possible to prove linearizability of whole programs or compound data structures (e.g., a ticket lock)
using proofs of linearizability of their individual components (e.g., a counter). While powerful, these approaches

are also laborious—state-of-the-art tools such as Iris, FCSL, and Voila all require a form of interactive proof.

This paper develops proof automation for contextual refinement and logical atomicity in Iris. The key

ingredient of our proof automation is a collection of proof rules whose application is directed by both the

program and the logical state. This gives rise to effective proof search strategies that can prove linearizability of

simple examples fully automatically. For more complex examples, we ensure the proof automation cooperates

well with interactive proof tactics by minimizing the use of backtracking.

We implement our proof automation in Coq by extending and generalizing Diaframe, a proof automation

extension for Iris. While the old version (Diaframe 1.0) was limited to ordinary Hoare triples, the new version

(Diaframe 2.0) is extensible in its support for program verification styles: our proof search strategies for

contextual refinement and logical atomicity are implemented as modules for Diaframe 2.0. We evaluate our

proof automation on a set of existing benchmarks and novel proofs, showing that it provides significant

reduction of proof work for both approaches to linearizability.
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1 INTRODUCTION
Concurrent algorithms and data structures play an increasingly important role in modern comput-

ers. For efficiency, such algorithms and data structures often rely on fine-grained concurrency—they
use low-level operations such as Compare And Swap (CAS) instead of high-level synchronization

primitives such as locks. The “golden standard” of correctness for such data structures is lineariz-
ability [Herlihy and Wing 1990]. An operation on a concurrent data structure is linearizable if its

effect appears to take place instantaneously, and if the effects of concurrently running operations

always constitute a valid sequential history. This can be formalized by requiring that somewhere

during every operation on the concurrent data structure, there exists a single atomic step which
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logically performs the operation on the data structure. This point is called the linearization point,
and the effects of concurrent operations must then match the effects of the corresponding sequential

operations, when ordered by linearization point.

Linearizability has originally been formulated as a property on program traces by Herlihy and

Wing [1990]. This formulation is a good fit for automated proofs, as witnessed by fully automated

methods based on shape analysis [Henzinger et al. 2013; Vafeiadis 2010; Zhu et al. 2015] and model

checking [Burckhardt et al. 2010]—see Dongol and Derrick [2015] for a detailed survey. However,

Dongol and Derrick [2015] classify these methods as not compositional: they are unable to abstractly
capture the behavior of the environment. Accordingly, there has been an avalanche of research on

formulations and proof methods for linearizability that enable compositional verification: proving

linearizability of compound data structures (e.g., a ticket lock) using proofs of linearizability of their
individual components (e.g., a counter). Unfortunately, proof automation for these compositional

approaches to linearizability is still lacking.

Compositional approaches to linearizability. Notable examples of compositional approaches

to linearizability are contextual refinement [Filipović et al. 2010; Liang and Feng 2013; Turon et al.

2013], logical atomicity [Birkedal et al. 2021; da Rocha Pinto et al. 2014; Jung et al. 2015], and

resource morphisms [Nanevski et al. 2019]. We focus on the first two: they are both available in the

Iris framework for separation logic in Coq [Jung et al. 2016, 2018b, 2015; Krebbers et al. 2017a,b],

and recent work by Mulder et al. [2022] provides a starting point for proof automation in Iris.

Linearizability follows from contextual refinement 𝑒 ⪯ctx 𝑒 ′, where 𝑒 is the fine-grained concur-

rent program, and 𝑒 ′ is a coarse-grained (i.e., lock-based) version of 𝑒 . A program 𝑒 contextually

refines 𝑒 ′, if for all well-typed contexts 𝐶 , if 𝐶 [𝑒] terminates with value 𝑣 , then there exists an

execution so that 𝐶 [𝑒 ′] also terminates with value 𝑣 . The quantification over all contexts 𝐶 makes

refinements compositional, but also difficult to prove. Turon et al. [2013] pioneered an approach

based on separation logic that made it feasible to prove refinements of sophisticated concurrent

algorithms on paper. Krebbers et al. [2017b] incorporated this work into Iris to enable interactive

proofs using Coq. The state of the art for refinement proofs in Iris is the ReLoC framework [Frumin

et al. 2018, 2021b], which has been applied to sophisticated examples such as the Michael-Scott

queue [Vindum and Birkedal 2021] and a queue from Meta’s Folly library [Vindum et al. 2022].

Linearizability also follows from a logically atomic triple ⟨𝑃⟩ 𝑒 ⟨𝑄⟩. Intuitively, such a triple

gives a specification for the linearization point of the program 𝑒 . Even though 𝑒 itself may not be

physically atomic, 𝑒 will atomically update the resources in 𝑃 to the resources in 𝑄 , somewhere

during its execution. Logically atomic triples can be composed inside the logic, i.e., the triple for one
data structure (say, a counter) can be used to verify to another (say, a ticket lock). Logical atomicity

has been pioneered in the TaDA logic by da Rocha Pinto et al. [2014], and was embedded in Iris

and extended with support for higher-order programs and programs with “helping” (delegation of

the linearization point to another thread) by Jung et al. [2015]. Logical atomicity in Iris has been

used to verify challenging examples such as the Herlihy-Wing queue and RDCSS [Jung et al. 2020],

and by engineers at Meta to verify a high-performance queue [Carbonneaux et al. 2022]. GoJournal

[Chajed et al. 2021] uses logical atomicity in Iris to verify a concurrent, crash-safe journaling system

of significant size (∼1.300 lines of Go code, ∼25.000 lines of Coq proofs). Compositionality is crucial

in GoJournal’s verification: the implementation consists of four layers, and the verification of each

layer uses the logically atomic specification of the previous layer.

State of the art on proving linearizability compositionally. The state of the art for compo-

sitional approaches to linearizability is to construct proofs interactively. Refinement and logical

atomicity proofs in Iris are constructed interactively using the Iris Proof Mode in Coq [Krebbers

et al. 2018, 2017b]. Similarly, linearizability proofs using the resource morphism approach [Nanevski
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et al. 2019] are constructed interactively using the FCSL framework in Coq [Sergey et al. 2015].

Both Iris and FCSL use a tactic-based style. That is, one writes down the program and specification

(and all auxiliary definitions) and then carries out the proof using a sequence of tactics, where each

tactic decomposes the proof obligation into simpler proof obligations.

An alternative proof style is used in the Voila tool [Wolf et al. 2021]—a proof outline checker for

logical atomicity in TaDA [da Rocha Pinto et al. 2014] (a logic that preceded and influenced Iris).

Contrary to the tactic-based style, Voila provides a proof style where the program is annotated

with assertions and pragmas to guide the proof search. Being a proof outline checker, Voila’s goal

is not full automation—it requires the user to provide (with pragmas) key steps of the proof. This

significantly reduces the proof burden compared to interactive proofs in tactic-based tools such as

Iris and FCSL, but still requires annotations for all lines of code that touch shared state.

This discussion indicates that proving linearizability is currently a laborious endeavor. This is

also emphasized by Carbonneaux et al. [2022] (who verified a queue for Meta using Iris):

We were also surprised that the most important lemmas took only a couple

lines to prove while using the invariants and writing the code proofs required

hundreds of rather straightforward lines. While Iris’ proof mode made using CSL

[Concurrent Separation Logic] easy, this observation seems to indicate that there

remains untapped potential to increase the reasoning density.

This paper presents a step forward to obtain this untapped potential. We present Diaframe 2.0—
a proof automation extension for Iris, which we have successfully used to automate (parts of)

contextual refinement and logical atomicity proofs. Before describing the key ideas and architecture

of Diaframe 2.0, let us first outline our design goals.

Design goal #1: Fully automated proofs for ‘simple’ programs. Our goal is to prove lineariz-
ability of ‘simple’ programs fully automatically. That is, once the program and specification are

written down, the tool should find a proof without user assistance. This brings the tooling for

compositional approaches closer to the tooling for non-compositional (trace-based) approaches.

Design goal #2: Assistance using interactive proofs for ‘complex’ programs. Although we

aim for full proof automation of ‘simple’ programs, this should not come at the cost of expressivity.

We also want to verify arbitrarily ‘complex’ programs and give them strong specifications. Providing

full automation that works in every situation is impossible—due to Iris’s expressive logic, any proof

automation is inherently incomplete (in fact, propositional separation logic is already undecidable

[Brotherston and Kanovich 2014]). For more complex examples, the proof automation should be

predictable and behave in an acceptable manner when it encounters a goal it cannot solve. This

means the proof automation should be able to make partial progress (instead of only being able to

fully solve a goal or fail), so that the user can assist if needed.

Design goal #3: Declarative and modular definitions of proof automation. Logics for re-
finement and logical atomicity are very different—they use different judgments with bespoke proof

rules. To avoid having to reinvent the wheel for both logics, we would like to write our proof

automation in a way that is declarative (i.e., that abstracts over low-level aspects) and modular (i.e.,
that can be composed out of different ‘modules’). Despite the differences between both logics, both

are based on separation logic. This means that the proof automation for both logics needs to deal

with the fact that resources are substructural (can be used at most once), and should share features

provided by Iris such as modalities, impredicative invariants and custom ghost state. It is thus

desirable to have a shared ‘core’ module. We want to have an integration between (the automation

for) both logics so that logically atomic triples (which provide internal compositionality) can be

used to prove refinements (which provide external compositionality). This should be achievable by
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combining the two modules. During the development, we wish to be able to quickly experiment

with different rules and priorities. This should be possible by changing the relevant module locally

instead of the proof automation globally. In the future, we want to support new features of Iris

(such as prophecy variables [Jung et al. 2020] and later credits [Spies et al. 2022]) or new specifica-

tion styles in Iris (such as termination-preserving refinement [Gäher et al. 2022] and the security

condition non-interference [Frumin et al. 2021a; Gregersen et al. 2021]). Ideally, this should also be

possible by adding additional modules instead of having to change the proof automation globally.

Design goal #4: Foundational proofs in a proof assistant. To ensure that our proof automa-

tion is as trustworthy as possible, we want it to be foundational [Appel 2001]. This means that

proofs are conducted in a proof assistant against the operational semantics of the programming

language. To achieve this, the proof rules of the logic need to be proved sound (which has already

been done for Iris) and our automation needs to be proved sound against the Iris proof rules (which

is one of the contributions of this paper).

Key ideas for achieving the design goals. Our desired proof automation should not only be

able to fully automatically construct simple proofs of linearizability (Design goal #1), it should

allow user assistance with interactive proofs (Design goal #2), and be defined declaratively (Design

goal #3). We list the key design choices that we hold responsible for achieving this combination of

constraints. Our final design goal is to produce foundational proofs (Design goal #4), but we believe

our key ideas could be useful even in a non-foundational setting (i.e., outside of a proof assistant).
• Minimize backtracking. To ensure the proof automation cooperates well with interactive

proofs, we avoid the use of backtracking in our proof automation whenever possible. In

many cases, it is not apparent that backtracking can be avoided—but it can be avoided more

frequently than one might expect. By avoiding backtracking, it becomes much easier to

alternate between proof automation and interactive proof tactics: the proof automation can

simply be ‘run’ until it gets stuck, at which point the user can use a tactic (or other means) to

direct the proof.

• Use program and logical state to select proof rules.While we want to minimize backtracking,

multiple proof rules are often applicable during the verification of a program. To select the

correct proof rule, the proof automation also inspects the logical state of the proof. This

gives Diaframe 2.0 an edge on other proof automation tools, where such information is not

available or fully leveraged. For example, this allows Diaframe 2.0 to automatically perform

some key steps for dealing with shared state in logical atomicity proofs, while they must be

provided explicitly in proof outlines for Voila.

• Represent proof rules as instances of a general format, and leverage near-applicability. To
implement our proof automation in a declarative and modular way, we identify general

formats to capture proof rules. These formats describe the ‘current’ and ‘new’ verification

goal, and optionally, a piece of required logical state. To extend the proof search strategy with

additional proof rules, one simply shows that they can be written as instances of the general

formats. Modules for our proof automation are then just collections of rules, executed by the

proof automation strategy. We also add flexibility for when the logical state or current goal

nearly matches a rule—for example, when the required logical state can be found beneath a

connective of the logic. In such cases, the rule is still applied automatically, but the automation

will first deal with the connective. This keeps the modules of our proof automation declarative

and concise, while becoming applicable in more situations.

Implementation of Diaframe 2.0. The implementation of Diaframe 2.0 is guided by the design

goals and choices described above. An overview of Diaframe 2.0’s architecture is shown in Fig. 1.
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Verification goal

|= 𝑒1 ≾ 𝑒2 : 𝐴

⟨𝑃⟩ 𝑒 ⟨𝑄⟩
⊲𝐺,�𝐺, . . .

Diaframe 1.0

ghost state and

invariant

reasoning module

Qed

refinement module (§2)

logical atomicity module (§3)

modality module (§2)

implemented with abduction

and transformer hints (§ 4)

Fig. 1. Overview of the architecture of Diaframe 2.0.

The key ingredients are the proof strategies underpinning the refinement and logical atomicity

modules. To realize these strategies, we start with the original proof rules of ReLoC and logically

atomic triples in Iris, and design derived rules whose application is directed by the program and

logical state. These derived rules are proved sound in Coq (Design goal #4), and make up our proof

search strategy. To ensure good integration with interactive proofs (Design goal #2) and as per

our design choices, our strategies make minimal use of backtracking. Backtracking is sometimes

needed to find the linearization point, but our strategies are otherwise deterministic. Backtracking

can be disabled altogether, allowing the user to intervene at key steps in the proof.

Proof automation for linearizability in Iris critically relies on dealing with the cornerstones of

Iris’s concurrent separation logic: invariants and ghost resources. For these, we build upon our

earlier work Diaframe 1.0 [Mulder et al. 2022]. Diaframe 1.0 provides proof automation for the

verification of fine-grained concurrent programs, but is restricted to Hoare triples for functional

correctness—and thus does not support linearizability. However, we reuse Diaframe 1.0’s key

innovation: its ability to automatically reason with invariants and ghost resources. In accordance

with Design goal #3, this is a separate proof automation module used by both the refinement and

logical atomicity proof search strategies.

To express the proof search strategies for contextual refinement and logical atomicity in a

declarative manner (Design goal #3), we identify two general formats for rules in these strategies.

Abduction hints are used to replace a program specification goal with a successive goal. One can

specify whether this must be done unconditionally, only when a certain hypothesis is spotted, or just

as a last resort. A simple collection of abduction hints can describe the original Diaframe 1.0 strategy

for Hoare triples (so Diaframe 2.0 is backwards compatible w.r.t. Diaframe 1.0). Transformer hints
apply to goals where we need to reason about the entire context. Simple instances of transformer

hints are the introduction rules for Iris’s various modalities, such as the later (⊲) and persistence

(�) modality. The combination of abduction and transformer hints can express a crucial proof rule

in the verification of logically atomic triples. Additionally, they allow us to apply (Löb) induction

automatically (which was impossible in Diaframe 1.0).

Following ideas from Gonthier et al. [2011]; Krebbers et al. [2017b]; Spitters and Weegen [2011],

we represent these hints using type classes in Coq [Sozeau and Oury 2008]. The modules for our

strategies for contextual refinement and logical atomicity are given as collections of type class

instances. Diaframe 2.0’s proof automation is implemented as an Ltac tactic [Delahaye 2000], that

uses type class search to select an applicable hint (i.e., a rule in the strategy) for a given goal.

Type class search is also used to close off our rules under the connectives of separation logic, thus

achieving our third key idea of near-applicability. Coq requires us to prove soundness of each rule

represented as a type class instance, thus achieving foundational proofs (Design goal #4). Aside
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from enabling declarative definitions of proof search strategies (Design goal #3), the use of type

classes is more robust compared to implementing the strategies directly as an Ltac tactic. Type class

instances are strongly typed, so many errors show up during the implementation of the strategy as

hints, instead of during the execution of the proof strategy.

Contributions and outline. Our contributions are as follows:

• In §2 we describe our proof automation strategy for refinements in ReLoC.

• In §3 we describe our proof automation strategy for logically atomic triples in Iris.

• In §4 we describe the extensible proof automation strategy that underpins Diaframe 2.0. This

strategy is parametric in the program specification style through the use of three kinds of

hints—for abduction (new), transformer (new), and bi-abduction (from Diaframe 1.0). The

proof automation strategies for our first two contributions are encoded in Diaframe 2.0.

• In §5 we evaluate our proof automation on existing and new benchmarks. We compare to

existing proofs in Voila [Wolf et al. 2021], showing an average proof size reduction by a factor

4, while adding foundational guarantees (§5.1). We compare to existing interactive proofs of

RDCSS and the elimination stack in Iris, showing an average proof size reduction by a factor

4 (§5.2). Our new result is a proof of logical atomicity for the Michael-Scott queue [Michael

and Scott 1996] (§5.3). For refinement, we compare to existing interactive proofs in ReLoC,

showing an average proof size reduction by a factor 7 (§5.4).

• All of our results have been implemented and verified using the Coq proof assistant. The

Coq sources can be found in Mulder and Krebbers [2023].

We conclude the paper with related work (§6) and future work (§7).

2 PROOF AUTOMATION FOR CONTEXTUAL REFINEMENT
This section introduces the main ideas for automating contextual refinement proofs in the Iris-based

logic ReLoC [Frumin et al. 2018, 2021b]. We start with an example verification (§2.1), providing

intuition for ReLoC. After providing some formal background for ReLoC’s proof rules (§2.2), we

describe our proof automation strategy (§2.3).

2.1 Contextual Refinement of an Incrementer
Contextual refinement specifies the behavior of one program in terms of another, usually simpler,

program. For linearizability, we take a coarse-grained version as the simpler program, i.e., a ver-
sion that uses a lock to guard access to shared resources. Filipović et al. [2010] shows that such

refinements imply the classical definition of linearizability based on traces. Consider the example in

Fig. 2, a slightly modified version of the example presented in the first ReLoC paper [Frumin et al.

2018]. We consider two implementations of an “incrementer”: fg incrementer and cg incrementer.

Whenever either such an incrementer is called with the unit value, it returns a closure. Whenever

this returned closure is called with the unit value, it returns an integer indicating the number of

times the closure has been called in total, across all threads.

Where the fine-grained version fg incrementer uses a CAS-loop (Compare And Swap) to deal

with concurrent calls to the closure, the coarse-grained version cg incrementer uses a lock. In-

tuitively, both versions “have the same behavior”—although they use different methods, both

programs guarantee a consistent tally of calls to the closure. We wish to prove a contextual

refinement fg incrementer ⪯ctx cg incrementer : () → () → Z that expresses that any behav-

ior of fg incrementer is a behavior of cg incrementer. More precisely, a contextual refinement

𝑒1 ⪯ctx 𝑒2 : 𝐴 expresses that for all contexts𝐶 that respect the type𝐴 of 𝑒1 and 𝑒2, if𝐶 [𝑒1] terminates

with value 𝑧, then there exists an execution sequence such that 𝐶 [𝑒2] also terminates with value 𝑧.
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Definition fg incrementer : val :=1

𝜆: <>,2

let: "l" := ref #1 in3

(rec: "f" <> :=4

let: "n" := ! "l" in5

if: CAS "l" "n" ("n" + #1) then6

"n"7

else8

"f" #()).9

Definition cg incrementer : val :=10

𝜆: <>,11

let: "l" := ref #1 in12

let: "lk" := newlock #() in13

(𝜆: <>,14

acquire "lk";;15

let: "n" := ! "l" in16

"l" ← "n" + #1 ;;17

release "lk";;18

"n").19

Lemma fg cg incrementer refinement :20

⊢ REL fg incrementer << cg incrementer : () → () → lrel int.21

Proof.22

iStepsS.23

iAssert (|={⊤}=> inv (nroot.@"incr")24

(∃ (n : nat), x ↦→ #n ∗ x0 ↦→𝑠 #n ∗ is locked r x1 false))%I25

with "[-]" as ">#Hinv"; first iStepsS.26

iSmash.27

Qed.28

Fig. 2. Verification of a refinement for a fine-grained concurrent incrementer in Diaframe 2.0.

It is well known that it is difficult to prove such contextual refinements, since they quantify over

all contexts 𝐶 . A common way to make these proofs tractable, is by introducing a notion of logical
refinement, which implies contextual refinement, but is easier to prove [Pitts 2005]. There exist

many approaches to define a notion of logical refinement, but in this paper we focus on approaches

based on separation logic as pioneered in the work by Dreyer et al. [2010] and Turon et al. [2013].

Approaches based on separation logic enable the use of resource and ownership reasoning and

are thereby well-suited for programs that use mutable state and concurrency. A state-of-the-art

separation logic for refinements based on this idea is ReLoC [Frumin et al. 2018, 2021b]. ReLoC is

embedded in Iris and comes with a judgment ( |= 𝑒1 ≾ 𝑒2 : 𝐴) for logical refinements.

ReLoC’s soundness theorem states that to prove the contextual refinement 𝑒1 ⪯ctx 𝑒2 : 𝐴, it

suffices to prove a (closed) Iris entailment (⊢ |= 𝑒1 ≾ 𝑒2 : 𝐴). Here, |= 𝑒1 ≾ 𝑒2 : 𝐴 is a proposition

in separation logic, which allows us to write refinements that are conditional on mutable state.

For example, we can prove that ℓ𝑙 ↦→ 𝑧 ∗ ℓ𝑟 ↦→s 𝑧 ⊢ |= ! ℓ𝑙 ≾ ! ℓ𝑟 : Z, i.e., a load of ℓ𝑙 contextually

refines a load of ℓ𝑟 , if both locations are valid pointers and point to the same value 𝑧. The maps-to
connectives ℓ𝑙 ↦→ 𝑧 and ℓ𝑟 ↦→𝑠 𝑧 represent the right to read and write to a location ℓ . Since we are

reasoning about two programs (and thus, two heaps), ReLoC uses the subscripted ↦→s (with ‘s’ for

specification) to indicate the heap of the right-hand side execution.

Proofs of ReLoC’s refinement judgment |= 𝑒1 ≾ 𝑒2 : 𝐴 use symbolic execution to reduce

expressions 𝑒1 and 𝑒2. The execution of 𝑒1 can be thought of as demonic: all possible behaviors of

𝑒1 need to be considered. The execution of 𝑒2 is angelic—we just need to find one behavior that

matches with 𝑒1. In a concurrent setting, this means 𝑒1 needs to account for (possibly uncooperative)

other threads, while 𝑒2 can assume cooperative threads and scheduling.

Verification of the example. Let us now return to the verification of the example in Fig. 2. Our

top-level goal (line 21) is the following logical refinement of closures:

⊢ |= fg incrementer ≾ cg incrementer : () → () → Z. (1)

The proof consists of 4 phases:
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(1) Symbolically execute both outer closures. This will create shared mutable state used by the

inner closures.

(2) Determine and establish a proper invariant for the shared mutable state.

(3) Perform induction to account for the recursive call in fg incrementer.
(4) Symbolically execute the inner closures, using the established invariant. This should allow

us to conclude the refinement proof.

These phases are representative for proofs of logical refinements. For this example, Diaframe 2.0 can

automatically deal with Proof Phase 1, Proof Phase 3 and Proof Phase 4. Automatically determining

proper invariants is very difficult, so we leave Proof Phase 2 up to the user (line 24–26).

As shown in Fig. 2, the Diaframe 2.0 proof takes 5 lines. The user’s main proof burden is writing

down the invariant ∃𝑛. ℓ𝑙 ↦→ 𝑛 ∗ ℓ𝑟 ↦→ 𝑛 ∗ isLock(𝑣, false) N , i.e., Proof Phase 2. (In Coq, we write

inv N R for 𝑅
N
.) Iris’s invariant assertion 𝑅

N
states that there is a (shared) invariant with

name N , governing resources satisfying Iris assertion 𝑅. Since 𝑅 can be shared, accessing the

resources in 𝑅 must come at a price. They can only be accessed temporarily, during the execution

of a single atomic expression (e.g., a load, store, or CAS) on the left-hand of the refinement. After

this expression, the invariant must be closed, i.e., one must show that assertion 𝑅 still holds. Since

execution of the right-hand side is angelic, we can execute the right-hand side multiple steps while

an invariant is opened.

Our proof proceeds as follows. We open the invariant to symbolically execute the load on the

left-hand side. This does not change the stored value, so we can immediately close the invariant.

We now reach the CAS on the left. We open the invariant again, and distinguish two cases. If the

CAS succeeds, we symbolically execute the entire right-hand side, which signifies the linearization

point. The invariant guarantees that the right-hand side expression returns 𝑛 as desired. If the CAS
fails, we close the invariant and use the induction hypothesis to finish the proof.

2.2 Background: Formal Rules for Contextual Refinement
To put the proof on a formal footing, we introduce some of Iris’s and ReLoC’s (existing) proof rules.

An overview can be found in Fig. 3. We go through the phases of the proof, introducing relevant

concepts (such as the � modality, invariant reasoning, and Löb induction) when necessary.

Proof Phase 1: Symbolic execution of outer closures and the � modality. Recalling our

initial proof obligation ⊢ |= fg incrementer ≾ cg incrementer : () → () → Z, we can start our

proof by using refines-closure. This rule is applicable for any proof context Δ, where Δ stands

for a list of assertions 𝑃1, . . . , 𝑃𝑛 . We denote Δ ⊢ 𝑄 for 𝑃1 ∗ . . . ∗ 𝑃𝑛 ⊢ 𝑄 .
Let us consider the premise of refines-closure: we need to prove ⊢ � ( |= 𝑣1 () ≾ 𝑣2 () : 𝐴). This

mentions Iris’s persistence modality �—the new proof obligation can be read as “it is persistently

true that 𝑣1 () logically refines 𝑣2 () at type 𝐴”. A proof of �𝐺 implies that𝐺 is duplicable, and can

thus be used more than once—this is not a given in substructural logics. To see why this modality

is necessary, note that clients may use the closure any number of times (and concurrently). Since

the two closures have not introduced any state (and the proof context Δ is thus empty), we can

apply iris-�-intro, introducing the � modality, and continue symbolic execution.

We can then use alloc-l, alloc-r and newlock-r to symbolically execute instructions on both

sides. Our proof obligation now looks as follows:

ℓ𝑙 ↦→ 1, ℓ𝑟 ↦→s 1, isLock(𝑣, false) ⊢ |= (rec . . .) ≾ (𝜆 . . .) : () → Z (2)

We obtain two maps-to connectives ℓ𝑙 ↦→ 1 and ℓ𝑟 ↦→s 1 in our proof context. Remember that these

are exclusive resources that can only be owned by one thread, and which signify the right to read

and write to a location ℓ . Similarly, isLock(𝑣, false) is an exclusive resource that says the lock 𝑣 is
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unlocked. In our proof obligation Equation (2), the two references and lock are captured and used

by the closures. Moreover, the left-hand closure will perform a CAS on ℓ𝑙 , meaning that concurrent

calls to this closure will all try to write to the same location. However, only one thread can hold

the ℓ𝑙 ↦→ 𝑛 resource, so we need a way to give shared access to this resource in the logic.

Proof Phase 2: Establish an invariant. In Iris, we can verify concurrent accesses using an

invariant 𝑅 . At any point during the verification, a resource 𝑅 can be turned into 𝑅 using

inv-alloc. This is called invariant allocation. The assertion 𝑅 is persistent, so unlike exclusive

resources such as ℓ𝑙 ↦→ 1 and ℓ𝑟 ↦→s 1, the invariant assertion can be kept in the proof context when

applying iris-�-intro. In Proof Phase 4, we will see how to access the invariant resource 𝑅.

We return to our proof obligation Equation (2). To continue, we will first allocate an invariant

using inv-alloc. We take 𝑅 ≜ ∃𝑛. ℓ𝑙 ↦→ 𝑛 ∗ ℓ𝑟 ↦→s 𝑛 ∗ isLock(𝑣, false), which expresses that the

values stored at ℓ𝑙 and ℓ𝑟 are in sync. After refines-closure and iris-�-intro, we are left with:

∃𝑛. ℓ𝑙 ↦→ 𝑛 ∗ ℓ𝑟 ↦→s 𝑛 ∗ isLock(𝑣, false)
N ⊢ |= (rec . . .) () ≾ (𝜆 . . .) () : Z. (3)

The left-hand side is now a recursive function applied to the unit value (), which will repeat until

the CAS on line 6 succeeds. To finish the proof, we need to account for the recursive call.

Proof Phase 3: Löb induction. To verify recursive functions, step-indexed separation logics

such as Iris and ReLoC use a principle called Löb induction. In essence, whenever we are proving

a goal 𝐺 , we are allowed to assume the induction hypothesis ⊲𝐺—the same goal, but guarded by

the later modality (⊲) [Appel et al. 2007; Nakano 2000]. We are allowed to strip later modalities of

hypotheses only after we perform a step of symbolic execution on the left-hand side. This ensures

we do actual work before we apply the induction hypothesis. After doing some of this work, we

reach the recursion point and need to prove𝐺 again. Since the work stripped off the later modality

of our induction hypothesis, we are in shape to apply the induction hypothesis and finish the proof.

A selection of Iris’s rules for the ⊲ and � modality and Löb induction are shown in Fig. 3b.

Rule Löb states that, if we are proving that Δ ⊢ 𝐺 , we can assume that the induction hypothesis

�(Δ −∗ 𝐺) holds, but only later. We can get rid of this later (⊲) whenever our goal gets prefixed by

a later, as witnessed by ⊲-intro. Iris’s � modality ensures that the induction hypothesis Δ −∗ 𝐺
can be used more than once. This is reflected in the logic by the rules �-elim and �-dup.

We can now continue proving our goal Equation (3). After Löb and unfold-rec-l, our goal is:(
∃𝑛. ℓ𝑙 ↦→ 𝑛 ∗ ℓ𝑟 ↦→s 𝑛 ∗ isLock(𝑣, false)

N
,

� ( |= (rec . . .) () ≾ (𝜆 . . .) () : Z)

)
⊢ |= (let𝑛 := !ℓ . . .) ≾ . . . : Z (4)

Proof Phase 4: Symbolic execution of inner closures. To finish the proof, we need to justify

the safety of the load and CAS operations of the left-hand expression. Additionally, we need to show
that a successful CAS from 𝑛 to 𝑛 + 1 (the linearization point) corresponds to an execution path for

the right-hand expression that terminates in 𝑛. The invariant we have established guarantees that.

Some additional rules for symbolic execution with invariants in ReLoC can be found in Fig. 3c.

As mentioned before, we can only access the resources in 𝑅 for the duration of atomic expressions.
Let us consider the load-l rule, to see how this is enforced. The premise of the rule mentions the

fancy update modality |⇛E1 E2
. The semantics of |⇛E1 E2 𝑃 is: assuming all invariants with names

in E1 hold, then 𝑃 holds, and additionally all invariants with names in E2 hold. The masks E
thus allow Iris to keep track of the opened invariants, and avoids opening invariants twice (i.e.,
invariant reentrancy, which is unsound). Note that load-l also shows that refinement judgments

|=E 𝑒1 ≾ 𝑒2 : 𝐴 have a mask parameter. We let E = ⊤ when the mask is omitted.
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refines-closure

Δ ⊢ �( |= 𝑣1 () ≾ 𝑣2 () : 𝐴)
Δ ⊢ |= 𝑣1 ≾ 𝑣2 : () → 𝐴

iris-�-intro

All hypotheses in Δ are persistent Δ ⊢ 𝐺
Δ ⊢ �𝐺

alloc-l

∀ℓ . Δ, ℓ ↦→ 𝑣 ⊢ |= 𝐾 [ℓ] ≾ 𝑒 : 𝐴
Δ ⊢ |= 𝐾 [ref 𝑣] ≾ 𝑒 : 𝐴

alloc-r

∀ℓ . Δ, ℓ ↦→s 𝑣 ⊢ |=E 𝑒 ≾ 𝐾 [ℓ] : 𝐴
Δ ⊢ |=E 𝑒 ≾ 𝐾 [ref 𝑣] : 𝐴

newlock-r

∀𝑣 . Δ, isLock(𝑣, false) ⊢ |=E 𝑒 ≾ 𝐾 [𝑣] : 𝐴
Δ ⊢ |=E 𝑒 ≾ 𝐾 [newlock ()] : 𝐴

inv-alloc

Δ ⊢ ⊲𝑅 ∗ ( 𝑅 N −∗|= 𝑒1 ≾ 𝑒2 : 𝐴)
Δ ⊢ |= 𝑒1 ≾ 𝑒2 : 𝐴

(a) Proof rules relevant for Proof Phase 1 and Proof Phase 2.

Löb

Δ, ⊲�(Δ −∗ 𝐺) ⊢ 𝐺
Δ ⊢ 𝐺

�-elim

� 𝑃 ⊢ 𝑃
�-dup

� 𝑃 ⊢ � 𝑃 ∗� 𝑃

unfold-rec-l

Δ ⊢ ⊲( |= 𝑒 [(rec 𝑓 𝑥 := 𝑒)/𝑓 ] [𝑣/𝑥] ≾ 𝑒 ′ : 𝐴)
Δ ⊢|= (rec 𝑓 𝑥 := 𝑒) 𝑣 ≾ 𝑒 ′ : 𝐴

⊲-intro

Δ′ obtained from Δ by stripping at most one ⊲ of every hypothesis Δ′ ⊢ 𝑃
Δ ⊢ ⊲ 𝑃

(b) Proof rules relevant for Proof Phase 3.

inv-access

N ⊆ E

𝑅
N ⊢ |⇛E E\N

(
⊲𝑅 ∗

(
⊲𝑅 −∗ |⇛E\N E True

)) fupd-elim

𝑃 ⊢ |⇛E1 E2𝑄 Δ, 𝑄 ⊢ |⇛E2 E3𝑅

Δ, 𝑃 ⊢ |⇛E1 E3𝑅

fupd-intro

𝑃 ⊢ |⇛E E 𝑃

load-l

Δ ⊢ |⇛⊤ E ∃𝑣 . ℓ ↦→ 𝑣 ∗ ⊲(ℓ ↦→ 𝑣 −∗ |=E 𝐾 [𝑣] ≾ 𝑒 : 𝐴)
Δ ⊢ |= 𝐾 [!ℓ] ≾ 𝑒 : 𝐴

refines-fupd

Δ ⊢ |⇛E ⊤ |= 𝑒1 ≾ 𝑒2 : 𝐴
Δ ⊢ |=E 𝑒1 ≾ 𝑒2 : 𝐴

cas-l

Δ ⊢ |⇛⊤ E ∃𝑣 . ℓ ↦→ 𝑣 ∗ ⊲
(
⌜𝑣 = 𝑣1⌝ ∗ ℓ ↦→ 𝑣2 −∗ |=E 𝐾 [true] ≾ 𝑒 : 𝐴 ∧
⌜𝑣 ≠ 𝑣1⌝ ∗ ℓ ↦→ 𝑣 −∗ |=E 𝐾 [false] ≾ 𝑒 : 𝐴

)
Δ ⊢ |= 𝐾 [CAS ℓ 𝑣1 𝑣2] ≾ 𝑒 : 𝐴

load-r

Δ, ℓ ↦→s 𝑣 ⊢ |=E 𝑒 ≾ 𝐾 [𝑣] : 𝐴
Δ, ℓ ↦→s 𝑣 ⊢ |=E 𝑒 ≾ 𝐾 [!ℓ] : 𝐴

store-r

Δ, ℓ ↦→s 𝑣 ⊢ |=E 𝑒 ≾ 𝐾 [()] : 𝐴
Δ, ℓ ↦→s 𝑤 ⊢ |=E 𝑒 ≾ 𝐾 [ℓ ← 𝑣] : 𝐴

refines-z

Δ ⊢ |= 𝑧 ≾ 𝑧 : Z

(c) Proof rules relevant for Proof Phase 4.

Fig. 3. A selection of the existing rules of Iris and ReLoC.
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The inv-access rule shows the interplay between invariants and fancy updates. For an invariant

𝑅
N
with nameN , ifN is contained in E, then removingN from E gives us access to the resource

𝑅. The original mask E can only be restored by handing back 𝑅. (Note that one only obtains 𝑅 under

a later modality (⊲). This is necessary since invariants in Iris are impredicative [Jung et al. 2018b;
Svendsen and Birkedal 2014], i.e., they may contain any resource, including invariants themselves.

The later modality allows Iris to soundly deal with such cases, but for simple resources like ℓ ↦→ 𝑛

(which are called timeless in Iris), the later modalities can be discarded.)

Returning to load-l: with E = ⊤ \ N , we can combine inv-access, fupd-elim and fupd-intro

to prove ∃𝑣 . ℓ ↦→ 𝑣 with the resources from our invariant. We then receive ℓ ↦→ 𝑣 back, since the

load operation does not change the state. Our new proof obligation is:

©­­«
𝑅
N
, ℓ𝑙 ↦→ 𝑛, ℓ𝑟 ↦→s 𝑛, isLock(𝑣, false),

(⊲𝑅 −∗ |⇛⊤\N ⊤True),
�( |= (rec . . .) () ≾ (𝜆 . . .) () : Z)

ª®®¬ ⊢ |=⊤\N (let𝑛 := 𝑛 . . .) ≾ . . . : Z

Since we opened an invariant, the refinement judgment after the turnstile has N removed from

its mask. All symbolic execution rules for the left-hand side require the mask to be ⊤, while the
symbolic execution rules for the right-hand side work for every mask E. This reflects the demonic

and angelic nature of left-hand side and right-hand side execution: we can keep invariants open for

multiple steps on the right, but only during a single atomic step on the left.

We refrain from symbolically executing the right-hand side until the CAS succeeds. After the

load, we restore the invariant using fupd-elim, and our hypothesis (⊲𝑅 −∗ |⇛⊤\N ⊤True). We then

use cas-l. Like at the load, our invariant will provide us with some 𝑛′ for which ℓ𝑙 ↦→ 𝑛′, and the

CAS will succeed precisely when 𝑛 = 𝑛′. Note that it is crucial to also consider the case 𝑛 ≠ 𝑛′: this
happens when another thread incremented ℓ𝑙 between the load and the CAS of the current thread.

The conjunction (∧) in cas-l means that the proof splits into two separate proof obligations. In

the successful case, we receive the updated ℓ𝑙 ↦→ (𝑛 + 1), together with the resource ⌜𝑛 = 𝑛′⌝. This
embeds the pure fact 𝑛 = 𝑛′ into Iris’s separation logic. Likewise, in the failing case we receive the

unchanged ℓ𝑙 ↦→ 𝑛′, together with the pure information ⌜𝑛 ≠ 𝑛′⌝.
For case 𝑛 = 𝑛′, the CAS succeeds, and the left-hand side expression will be returning 𝑛. After

some pure reduction, our proof obligation becomes:

©­­«
𝑅
N
, ℓ𝑙 ↦→ (𝑛 + 1), ℓ𝑟 ↦→s 𝑛, isLock(𝑣, false),

(⊲𝑅 −∗ |⇛⊤\N ⊤True)
�( |= (rec . . .) () ≾ (𝜆 . . .) () : Z)

ª®®¬ ⊢ |=⊤\N 𝑛 ≾ (acquire(𝑣); let𝑛 = !ℓ𝑟 . . .) : Z

At this point, we cannot restore the invariant: ℓ𝑙 and ℓ𝑟 point to different values. Only after symbol-

ically executing the right-hand side will we be able to restore the invariant, which indicates that

the linearization point must be now. With rules like load-r and store-r, we can acquire the lock,

execute the load and store operations, and finally release the lock. We conclude the proof of this

case by closing the invariant, and using refines-z.

For case 𝑛 ≠ 𝑛′, the CAS fails, and we receive back ℓ𝑙 ↦→ 𝑛′ unchanged. We restore the invariant.

After some pure reduction our goal becomes the Löb induction hypothesis, concluding our proof:

𝑅
N
,� (|= (rec . . .) () ≾ (𝜆 . . .) () : Z) ⊢ |= (rec . . .) () ≾ (𝜆 . . .) () : Z

2.3 Proof Automation Strategy
The above proof phases introduce different challenges for proof automation, in rising complexity:

• Proof Phase 1: Symbolic execution without preconditions, introducing the � modality.

Proc. ACM Program. Lang., Vol. 7, No. OOPSLA1, Article 91. Publication date: April 2023.



91:12 Ike Mulder and Robbert Krebbers

exec-l

∀®𝑥 . {𝐿} 𝑒1 {𝑈 } atomic 𝑒1 𝑒1 ∉Val Δ ⊢ |⇛⊤ E ∃®𝑥 . 𝐿 ∗ ⊲(∀𝑣 . 𝑈 −∗ |=E 𝐾 [𝑣] ≾ 𝑒2 : 𝐴)
Δ ⊢ |= 𝐾 [𝑒1] ≾ 𝑒2 : 𝐴

exec-r

∀®𝑥 . {𝐿} 𝑒2 {𝑈 }s Δ ⊢ |⇛E E ∃𝑥 . 𝐿 ∗ (∀𝑣 . 𝑈 −∗ |=E 𝑒1 ≾ 𝐾 [𝑣] : 𝐴)
Δ ⊢ |=E 𝑒1 ≾ 𝐾 [𝑒2] : 𝐴

val-z

Δ ⊢ |⇛E ⊤ ⌜𝑧1 = 𝑧2⌝

Δ ⊢ |=E 𝑧1 ≾ 𝑧2 : Z

val-fun

Δ ⊢ |⇛E ⊤ � ( |= 𝑣1 () ≾ 𝑣2 () : 𝐴)
Δ ⊢ |=E 𝑣1 ≾ 𝑣2 : () → 𝐴

reloc-apply

Δ,�(Δ′ −∗|= 𝑒1 ≾ 𝑒2 : 𝐴) ⊢ |⇛E EΔ′ ∗ |⇛E ⊤ (∀𝑣1𝑣2 . 𝐴 𝑣1 𝑣2 −∗|= 𝐾1 [𝑣1] ≾ 𝐾2 [𝑣2] : 𝐵)
Δ,�(Δ′ −∗|= 𝑒1 ≾ 𝑒2 : 𝐴) ⊢ |=E 𝐾1 [𝑒1] ≾ 𝐾2 [𝑒2] : 𝐵

Fig. 4. Derived proof rules for ReLoC suitable for proof automation.

• Proof Phase 2: Not introducing the � modality to allow the user to allocate the invariant.

• Proof Phase 3: Automatically performing Löb induction when it is necessary.

• Proof Phase 4: Symbolic execution where the preconditions are inside an invariant, followed

by automatic application of induction hypothesis.

In this section, we give a description of our proof strategy that can handle these challenges. The

strategy operates on goals Δ ⊢ 𝐺 , where the grammar of 𝐺 is given by:

𝐺 ::= |=E 𝑒1 ≾ 𝑒2 : 𝐴 | ⊲𝐺 | �𝐺 | |⇛E1 E2 ∃®𝑥 . 𝐿 ∗𝐺.
(𝐿 are ‘easy’ goals like ℓ ↦→ 𝑣 , described in §4.5). If𝐺 is of one of the first three shapes, the strategy

either provides a rule to apply, or stops. If𝐺 has the last shape, we reuse the existing automation of

Diaframe 1.0 [Mulder et al. 2022] to handle invariants, which operates on precisely these goals.

Our proof strategy is the result of restating the original rules of ReLoC (Fig. 3) so that they can

be applied systematically. Our new rules can be found in Fig. 4. We have verified in Coq that these

rules can be derived from the existing rules of ReLoC and Iris. Rule exec-l generalizes symbolic

execution rules like load-l over the expression 𝑒1, where ∀®𝑥 . {𝐿} 𝑒1 {𝑈 } is a Hoare triple for 𝑒1. In
Coq, ∀®𝑥 . {𝐿} 𝑒1 {𝑈 } is represented by a type class, so that given an expression 𝑒1, the precondition

𝐿 and postcondition𝑈 can be found automatically. Rule exec-r is similar, but uses Hoare triples

∀®𝑥 . {𝐿} 𝑒2 {𝑈 }s for the right-hand side. Finally, val-z and val-fun keep the fancy update around

and have been generalized to all masks E so that the strategy can postpone closing invariants.

We can now give our proof search strategy for refinement judgments. Suppose the goal is

Δ ⊢ |=E 𝑒1 ≾ 𝑒2 : 𝐴. We proceed by case distinction on both 𝑒1 and 𝑒2, and try the following rules in

order (omitting some cases, e.g., those related to pure reductions and higher-order functions):

(1) If 𝑒1 and 𝑒2 are values, apply rules similar to val-z and val-fun, depending on the type 𝐴.

(2) If 𝑒1 is a value and 𝑒2 is not, apply exec-r.

(3) If 𝑒1 is not a value and E = ⊤, try the following:

(a) Find 𝑒 with 𝑒1 = 𝐾 [𝑒] for which exec-l is applicable, otherwise

(b) Try to find an induction hypothesis to apply with reloc-apply, otherwise

(c) If 𝑒1 := (rec 𝑓 𝑥 := 𝑏) 𝑣 , apply Löb induction with Löb, followed by unfold-rec-l.

(4) If 𝑒1 is not a value and E ≠ ⊤, but 𝑒2 ís a value, apply refines-fupd.
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(5) If 𝑒1 is not a value and E ≠ ⊤ and 𝑒2 is not a value, there are two valid ways to proceed: either

restore the invariant with refines-fupd, or perform symbolic execution on the right with

exec-r. Depending on the user’s preference, the proof automation will backtrack on these

choices, or stop and let the user choose how to proceed.

Additionally, for other goals Δ ⊢ 𝐺 :
(6) 𝐺 = �𝐺 ′: Apply iris-�-intro, but only if all hypotheses in Δ are persistent. Stop otherwise.

(7) 𝐺 = ⊲𝐺 ′: Apply rule ⊲-intro to introduce the later and strip laters from the context.

(8) 𝐺 = |⇛E1 E2 ∃®𝑥 . 𝐿 ∗𝐺 ′: Use proof automation from Diaframe 1.0 to make progress.

Verification of the example in Fig. 2. The strategy above is available using the iStepsS tactic
in Coq. In the verification of the example in Fig. 2, the iStepsS tactic stops at line 24 after applying
val-fun for the second time. Item 6 (� introduction) would be applicable, except that the proof

context Δ is not persistent. Iris allows one to weaken the context before introducing the � modality,

but our automation refrains from doing so—it often leads to improvable goals down the line. Our

automation thus stops and allows the user to allocate an invariant before proceeding. To allocate

the invariant, we use the iAssert tactic from the Iris Proof Mode.

Why these rules? Let us motivate our proof strategy and indicate how it reflects the design

goals described in § 1. After the invariant is established, the refinement of the two closures is

established completely automatically, as is Design goal #1. Automatically inferring invariants is

outside Diaframe 2.0’s scope. The strategy as a whole makes explicit the pattern followed in most

interactive proofs, although the details differ. To be precise, the pattern is: symbolically execute

the left-hand side, until you reach an expression that may be subject to interference from the

environment (i.e., for which an invariant must be opened). The right-hand side expression may

need to be symbolically executed some number of times at these points.

Design goal #2 is to enable assistance with interactive tactics for difficult refinements. To do so,

it is crucial that the proof automation does not perform backtracking, unless requested. None of the

steps of our strategy perform backtracking, except for Item 5. This step needs to choose between

restoring the invariant, and symbolically executing the right-hand expression. For linearizability,

this corresponds to deferring or identifying the linearization point, which is known to be hard.

The iSmash tactic will backtrack on this choice, and is used in Fig. 2 to finish the proof. The

sequence iStepsS; iApply refines-fupd; iStepsS also constitutes a valid proof: iStepsS will

not backtrack, and instead stop the proof automation. In that case, Iris’s iApply refines-fupd can

be used to instruct the proof automation to restore the invariant (defer linearization), after which

the proof can be finished with a second call to iStepsS.
Finally, Design goal #3 is declarative and modular proof automation. In the implementation,

Items 7 and 8 are part of the core proof automation module. Item 6 comes in a separate module for

handling �𝐺 ′ goals, that may be of independent use for other goals. Items 1 to 5 are all part of

the refinement module. We achieve foundational proofs (Design goal #4) by establishing that all

rules used in our proof strategy can be derived from the primitive rules of ReLoC and Iris (i.e., they
are not axiomatic). These derivations have been mechanized in Coq. Combined with the existing

soundness proof of ReLoC and Iris, this makes sure that our automation constructs closed Coq

proofs w.r.t. the operational semantics of the programming language involved.

3 PROOF AUTOMATION FOR LOGICAL ATOMICITY
This section considers logically atomic triples to establish linearizability. We start by giving intuition

about the need and meaning of such triples (§3.1). After discussing the formal proof rules in Iris

(§3.2), we show our strategy for proof automation of these triples (§3.3).
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Definition inc : val :=1

rec: "f" "l" :=2

let: "n" := ! "l" in3

if: CAS "l" "n" ("n" + #1) then4

"n"5

else6

"f" "l".7

Global Instance inc spec (l : loc) :8

SPEC (z : Z), << l ↦→ #z >> inc #l << RET #z; l ↦→ #(z + 1) >>.9

Proof. iSmash. Qed.10

Fig. 5. Verification of a logically atomic triple for a fine-grained concurrent incrementer in Diaframe 2.0.

3.1 Logical Atomicity in Iris
Consider the inc function defined in lines 1-7 of Fig. 5. The pattern of recursively trying to CAS
occurs in various concurrent programs: we have seen it in fg incrementer in §2, and it also occurs

in the implementation of e.g., a ticket lock. To enable modular verification, we would like to give

inc a useful specification that can be used in the verification of other concurrent algorithms.

Let us try to specify inc using a regular Hoare triple {𝑃} 𝑒 {Φ} , where 𝑃 is an Iris assertion and

Φ is an Iris predicate on values. The Hoare triple expresses that for each thread that owns resources

satisfying the precondition 𝑃 , executing 𝑒 is safe, and if the execution terminates with value 𝑤 ,

the thread will end up owning resources satisfying the postcondition Φ𝑤 . A naive specification

is {ℓ ↦→ 𝑧} inc ℓ {𝑣 . ⌜𝑣 = 𝑧⌝ ∗ ℓ ↦→ (𝑧 + 1)} . This states that to execute inc ℓ , we need exclusive

write-access to location ℓ , as indicated by the precondition ℓ ↦→ 𝑛. Once inc ℓ terminates, it returns

value 𝑧, and the ℓ ↦→ (𝑧 + 1) in the postcondition tells us that the value stored by ℓ has been

incremented. Although provable, this specification is not useful in a concurrent setting. It requires

a thread to give up ℓ ↦→ 𝑧 during inc ℓ , while it usually does not have exclusive access to ℓ ↦→ 𝑧.

We have seen that for refinements, calls to CAS can be verified in a concurrent setting. This is

because CAS is a physically atomic instruction, which gives us access to invariant reasoning. To

see how this works, we state Iris’s invariant rule for Hoare triples, and the specification for load:

hoare-load

{ℓ ↦→ 𝑣} !ℓ {𝑤.⌜𝑤 = 𝑣⌝ ∗ ℓ ↦→ 𝑣}E

hoare-inv-access

{⊲𝑅 ∗ 𝑃} 𝑒 {𝑣 . ⊲𝑅 ∗𝑄}E\N atomic 𝑒 N ⊆ E{
𝑅
N ∗ 𝑃

}
𝑒 {𝑣 . 𝑄}E

hoare-load gives a straightforward specification for loading a value: the expression returns the

stored value 𝑣 , and one keeps access to ℓ ↦→ 𝑣 . Like refinement judgments, every Hoare triple is

annotated with a mask E. When opening invariants with hoare-inv-access, the invariant names

are removed from the masks, which prevents invariant reentrancy.

We can open invariants around the load instruction with hoare-inv-access only because it is a

physically atomic instruction, i.e., we have ‘atomic (!ℓ)’. Since we do not have ‘atomic (inc ℓ)’, this
rule is not applicable. But although inc is not physically atomic, the effects of inc appear to take place

atomically for clients. That is, at a certain point during the execution of inc, namely, when the CAS
succeeds, ℓ ↦→ 𝑧 is atomically consumed to produce ℓ ↦→ (𝑧 + 1). This gives us a characterization of

linearizability: an operation is linearizable if it appears to take place atomically/instantly somewhere

during its execution, and the precise moment when this happens place is called the linearization
point. Inspired by the TaDA logic [da Rocha Pinto et al. 2014], Iris features a special kind of Hoare

triple to specify this, called a logically atomic triple [Jung 2019; Jung et al. 2020, 2015]. We specify
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the behavior of inc using the following logically atomic triple:

inc-logatom

⟨𝑧. ℓ ↦→ 𝑧⟩ inc ℓ ⟨𝑣 . ⌜𝑣 = 𝑧⌝ ∗ ℓ ↦→ (𝑧 + 1)⟩∅
We replaced { with ⟨, what did we gain? In words, the meaning of a logically atomic triple ⟨𝑃⟩ 𝑒 ⟨Φ⟩
is: at the linearization point in the execution of 𝑒 , the resources in 𝑃 are atomically consumed to

produce the resources in Φ 𝑣 , where 𝑣 is the final return value of expression 𝑒 . Birkedal et al. [2021]

established formally that such triples indeed imply linearizability. Logically atomic triples have the

additional benefit that they can be used inside the logic, with the following reasoning rules:

la-inv

𝑅
N ⟨®𝑥 . 𝛼 ∗ ⊲𝑅⟩ 𝑒 ⟨𝑣 . 𝛽 ∗ ⊲𝑅⟩E\N

⟨®𝑥 . 𝛼⟩ 𝑒 ⟨𝑣 . 𝛽⟩E

la-hoare

� ⟨®𝑥 . 𝛼⟩ 𝑒 ⟨𝑣 . 𝛽⟩E
∀®𝑥 . {𝛼} 𝑒 {𝑣 . 𝛽}⊤

la-inv shows that it is indeed possible to open invariants around logically atomic triples. The

la-hoare rule shows that logically atomic triples are stronger than ordinary Hoare triples.

The curious use of binder 𝑧 in inc-logatom deserves a comment. Logically atomic triples allow

a certain amount of interference from other threads, such as concurrent calls to inc. In such cases,

it is enough that at each moment there is some 𝑧 for which ℓ ↦→ 𝑧. This 𝑧 needs not be known when

the function is called, and may well be different at different moments. To reflect this in the logic,

the pre- and postconditions of logically atomic triples can be bound by (a number of) quantifiers ®𝑥 .

3.2 Background: Proof Rules for Logically Atomic Triples
To see how we use logically atomic triples, we will first discuss Hoare triples in Iris in more detail.

Hoare triples in Iris are not a primitive notion, but defined in terms of weakest preconditions:

{𝑃} 𝑒 {Φ} ≜ �
(
𝑃 −∗ wp 𝑒 {Φ}

)
The weakest precondition wp 𝑒 {Φ} asserts that execution of 𝑒 is safe (cannot get stuck), and if 𝑒

terminates with value 𝑣 , we get Φ 𝑣 . The Hoare triple {𝑃} 𝑒 {Φ} thus states that we can persistently

(so, multiple times) relinquish 𝑃 to execute 𝑒 , after which we obtain Φ 𝑣 for the return value 𝑣 .

Like Hoare triples, logically atomic triples are defined in terms of weakest preconditions:
1

la-def

⟨®𝑥 . 𝛼⟩ 𝑒 ⟨𝑣 . 𝛽⟩E ≜ ∀Φ. ⟨®𝑥 . 𝛼 | 𝑣 . 𝛽 ⇛ Φ 𝑣⟩⊤\E −∗ wp 𝑒 {Φ}

This expresses that for any postcondition Φ, to prove wp 𝑒 {Φ} it is enough to show an atomic
update of the form ⟨®𝑥 . 𝛼 | 𝑣 . 𝛽 ⇛ Φ 𝑣⟩⊤\E . Atomic updates represent the possibility to witness

variables ®𝑥 for which 𝛼 holds, at any instant. If one uses this possibility, one either needs to hand

back ownership of this exact 𝛼 to recover the atomic update, or hand back 𝛽 to obtain Φ 𝑣 (commit

the linearization point). By quantifying over Φ, Iris makes sure that the only way to prove a logically

atomic triple is by using the atomic update ⟨®𝑥 . 𝛼 | 𝑣 . 𝛽 ⇛ Φ 𝑣⟩⊤\E .

Proving logically atomic triples. Proving a logically atomic triple ⟨®𝑥 . 𝛼⟩ 𝑒 ⟨𝑣 . 𝛽⟩E is a matter

of ‘just’ proving a weakest precondition, i.e., a goal Δ ⊢ wp 𝑒 {Φ}. However, we need the atomic

update to get temporary access to 𝛼 and eventually get Φ. Atomic updates can be accessed as:

au-access-iris

⟨®𝑥 . 𝛼 | 𝑣 . 𝛽 ⇛ 𝑄⟩E ⊢ |⇛E ∅∃®𝑥 . 𝛼 ∗
( (
𝛼 −∗ |⇛∅ E ⟨®𝑥 . 𝛼 | 𝑣 . 𝛽 ⇛ 𝑄⟩E

)
∧

(
∀𝑣 . 𝛽 −∗ |⇛∅ E𝑄

) )
1
The definition of logically atomic triples does not feature the�modality to allow for private preconditions, i.e., preconditions
that one must relinquish completely at the start of the execution of 𝑒 . To make a logically atomic triple persistent, one has

to add the persistence modality explicitly. This is for example visible in rule la-hoare.
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Löb

Δ, ⊲�(Δ −∗ 𝐺) ⊢ 𝐺
Δ ⊢ 𝐺

unfold-rec

Δ ⊢ ⊲wp 𝑒 [(rec 𝑓 𝑥 := 𝑒)/𝑓 ] [𝑣/𝑥] {Φ}
Δ ⊢ wp (rec 𝑓 𝑥 := 𝑒) 𝑣 {Φ}

rec-apply

Δ,�(Δ′ −∗ wp 𝑒 {Ψ}) ⊢ |⇛⊤ ⊤Δ′ ∗ (∀𝑤. Ψ𝑤 −∗ wp 𝐾 [𝑤] {Φ})
Δ,�(Δ′ −∗ wp 𝑒 {Ψ}) ⊢ wp 𝐾 [𝑒] {Φ}

Fig. 6. Selection of Iris’s proof rules for Löb induction on weakest preconditions.

This rule states that (similar to Iris’s rule for invariants inv-access) an atomic update provides

access to 𝛼 by changing the masks of a fancy update ( |⇛E ∅
). After we obtain 𝛼 , there are two ways

to restore the mask, corresponding to the two sides of the (regular) conjunction. In the left conjunct,

we need to return precisely 𝛼 . This corresponds to ‘peeking’ at the state, without changing it (in

our example, this happens when the CAS fails). After peeking, we receive back the atomic update,

deferring the linearization point. For the right conjunct, we need to provide 𝛽 , which corresponds

to committing to the linearization point (in our example, this happens when the CAS succeeds).
We then get access to 𝑄 , the postcondition in la-def. One might be surprised to see a regular

conjunction (∧) in separation logic, where the separating conjunction (∗) is more common. Regular

conjunction corresponds to a form of internal choice: if one owns a regular conjunction 𝑃 ∧𝑄 , one
can either use it as 𝑃 (here, defer linearization) or as𝑄 (here, commit linearization), but not as both.

A proof of the logically atomic triple for inc in Fig. 5 needs to account for the recursive call

when the CAS fails. We will use Löb induction once more—Fig. 6 contains the relevant rules. By

combining Löb, unfold-rec and ⊲-intro, we perform induction and start symbolic execution of

the function. rec-apply shows how to apply the induction hypothesis at recursive calls.

Using logically atomic triples. With a proof of a logically atomic triple at hand, clients can

use a combination of la-hoare, la-inv and related rules to open invariants around the expression.

In actual proofs, this is done differently, since working beneath binder ®𝑥 is cumbersome in Coq.

Client verifications in Iris usually rely on the following rule:

sym-ex-logatom

⊢ ⟨®𝑥 . 𝛼⟩ 𝑒 ⟨𝑣 . 𝛽⟩E Δ ⊢
〈
®𝑥 . 𝛼 | 𝑣 . 𝛽 ⇛ wp 𝐾 [𝑣] {Φ}

〉
⊤\E

Δ ⊢ wp 𝐾 [𝑒] {Φ}
Instead of proving a logically atomic triple directly, one is now asked to prove an atomic update.

Atomic updates can be introduced as follows:

au-intro

Δ ⊢ |⇛E ?E′∃®𝑥 . 𝛼 ∗
(
(𝛼 −∗ |⇛?E′ EΔ) ∧ (∀𝑣 . 𝛽 −∗ |⇛?E′ E𝑄)

)
Δ ⊢ ⟨®𝑥 . 𝛼 | 𝑣 . 𝛽 ⇛ 𝑄⟩E

This rule asks us to show that opening some invariants in E gives us 𝛼 . Additionally, we need to

prove that obtaining 𝛼 is non-destructive: the original context Δ can be restored. This ensures that

when the implementation peeks at 𝛼 , it does not affect the client. The other side of the conjunction

shows that the atomic postcondition 𝛽 can be used to restore the invariants, and prove 𝑄 .

3.3 Proof Automation Strategy
Our proof automation for logical atomicity should be able to make progress on the following goals:

• Weakest preconditions: Δ ⊢ wp 𝑒 {Φ}, by definition of logically atomic triples la-def.
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• Atomic updates: Δ ⊢ ⟨®𝑥 . 𝛼 | 𝑣 . 𝛽 ⇛ 𝑄⟩E , when applying a known triple sym-ex-logatom.

• Goals of the form Δ ⊢ |⇛E1 E2 ∃®𝑥 . 𝐿 ∗ 𝐺 , after introducing atomic updates au-intro or to

establish the precondition of heap operations such as load and CAS. The context Δ might

contain atomic updates that should be eliminated via au-access-iris.

• Goals prefixed by a later modality: Δ ⊢ ⊲𝐺 , when using unfold-rec after Löb induction.

Our proof search strategy for these goal extends the existing proof search strategy from Diaframe

1.0 by internalizing Löb induction, and by adding support for logically atomic triples.

Suppose our goal is Δ ⊢ wp 𝑒 {Φ}. We proceed by case analysis on 𝑒 , trying the following rules

in order (omitting some cases, e.g., those related to pure reductions and higher-order functions):

(1) If 𝑒 is a value 𝑣 , then directly continue with proving Δ ⊢ |⇛⊤ ⊤Φ 𝑣 .
(2) If 𝑒 = 𝐾 [𝑒 ′], then either:

(a) We have a regular specification ∀®𝑥 . {𝐿} 𝑒 ′ {𝑈 } for 𝑒 ′. Use Diaframe 1.0’s existing approach

to make progress, which applies a rule similar to exec-l.

(b) We have a specification ⟨®𝑥 . 𝐿⟩ 𝑒 ′ ⟨𝑣 .𝑈 ⟩E . Apply sym-ex-logatom, continue with new goal

Δ ⊢
〈
®𝑥 . 𝐿 | 𝑣 .𝑈 ⇛ wp 𝐾 [𝑣] {Φ}

〉
⊤\E .

(c) Otherwise, try to find an induction hypothesis to use with rec-apply.

(3) If 𝑒 = (rec 𝑓 𝑥 := 𝑏) 𝑣 , i.e., a possibly recursive function applied to a value 𝑣 . Two cases:

(a) There is no actual recursion, i.e., 𝑓 does not occur in 𝑏. Apply unfold-rec and continue

with new goal Δ ⊢ ⊲wp 𝑏 [𝑣/𝑥] {Φ}.
(b) For recursive functions. Apply Löb, then apply unfold-rec. Continue with new goal

Δ, ⊲�(Δ −∗ wp 𝑒 {Φ}) ⊢ ⊲wp 𝑏 [𝑒/𝑓 ] [𝑣 ′/𝑥] {Φ}.2 Note that Δ will contain an atomic

update, which we will have to relinquish on recursive calls.

For Δ ⊢ 𝐺 with 𝐺 not a weakest precondition, we distinguish the following cases:

(4) 𝐺 = ⊲𝐺 ′. Apply rule ⊲-intro to introduce the later and strip laters from the context.

(5) 𝐺 = ⟨®𝑥 . 𝐿 | 𝑣 .𝑈 ⇛ 𝐺 ′⟩E . Two cases:

(a) If𝐺 ∈ Δ, directly use it to finish the proof. This situation occurs after applying the induction
hypothesis with rec-apply.

(b) Otherwise, we introduce the atomic update with au-intro. Our new goal becomes Δ ⊢
|⇛E ?E′∃®𝑥 . 𝐿 ∗

( (
𝐿 −∗ |⇛?E′ EΔ

)
∧

(
∀𝑣 . 𝑈 −∗ |⇛?E′ E𝐺

) )
.

(6) 𝐺 = |⇛E1 E2 ∃®𝑥 . 𝐿 ∗𝐺 . Use proof automation from Diaframe 1.0 to make progress. If enabled

and when relevant, Diaframe 1.0 will backtrack to determine the linearization point.

This strategy can prove the logically atomic triple in Fig. 5 without user assistance. It uses the

iSmash instead of the iStepsS tactic, which enables backtracking for automatically determining

the linearization point in Item 6. Proving atomic updates is covered by Item 5; we now provide

some details on how we use atomic updates in Item 6.

Using atomic updates. The verification of a logically atomic triple crucially depends on elimi-

nating atomic updates ⟨®𝑥 . 𝛼 | 𝑣 . 𝛽 ⇛ 𝑄⟩E with au-access-iris. The elimination of atomic updates

needs to happen in Item 6 when the Diaframe 1.0 automation needs to obtain ownership of 𝛼 .

This can be done by allowing Diaframe 1.0 to ‘look inside’ atomic updates, allowing it to

determine ways of obtaining ownership of resources inside 𝛼 . Note that au-access-iris is similar

to the invariant accessing rule inv-access, which Diaframe 1.0 can also apply automatically. The

main difference is that we have two independent ways to restore the mask (indicated by the ∧): we
either defer or commit the linearization point. We need to ensure this choice is not made too early,

2
In the Coq implementation we additionally generalize the Löb induction hypothesis over the arguments supplied to 𝑒 .
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and achieve this by replacing the conjunction with a disjunction on the left-hand side of a wand:
3

au-access-diaframe

⟨®𝑥 . 𝛼 | 𝑣 . 𝛽 ⇛ 𝑄⟩E ⊢ |⇛E ∅∃®𝑥 . 𝛼 ∗ ∀𝑚𝑣.
((𝛼 ∗ ⌜𝑚𝑣 = None⌝) ∨ (∃𝑣 . 𝛽 ∗ ⌜𝑚𝑣 = Some 𝑣⌝)) −∗
|⇛∅ E

match𝑚𝑣 with None⇒ ⟨®𝑥 . 𝛼 | 𝑣 . 𝛽 ⇛ 𝑄⟩E | Some 𝑣 ⇒ 𝑄 end

This disjunction needs to be proven to restore the mask, and the side of the disjunction will indicate

whether the linearization point should be deferred or committed. The rule au-access-diaframe is

derived from the rules for atomic updates of Iris. This result is mechanized in Coq.

Let us describe how this is used in the example from Fig. 5. To symbolically execute the load

and CAS, ownership of ℓ ↦→ 𝑧 is needed. Since the atomic update ⟨𝑧. ℓ ↦→ 𝑧 | 𝑣 . ℓ ↦→ (𝑧 + 1) ⇛ 𝑄⟩E
is in our context, Diaframe 1.0 will use au-access-diaframe to obtain temporary ownership of

ℓ ↦→ 𝑧. After symbolic execution, we receive back a possibly changed ℓ ↦→ 𝑧 ′, and the remaining

‘closing resource’ of shape (∀𝑚𝑣. ∨ −∗ |⇛∅ E ). Diaframe notices it can use this closing resource

to restore the mask, so the goal becomes (note that𝑚𝑣 is bound in 𝐺):

Δ ⊢ |⇛∅ ∅∃𝑚𝑣.
(
(𝛼 ∗ ⌜𝑚𝑣 = None⌝) ∨ (∃𝑣 . 𝛽 ∗ ⌜𝑚𝑣 = Some 𝑣⌝)

)
∗𝐺.

The iSmash tactic uses backtracking to pick the correct side of this disjunction—i.e., to decide if the
linearization point should be deferred or committed. We can also use the non-backtracking tactic

iStepsS and pick the correct disjunct interactively with the Iris tactics iLeft/iRight.

Functions. There are two cases for functions. Item 3b handles the situation in which the function

is recursive and generates a Löb induction hypothesis. Item 3a is a specialized version that handles

the case where there is no actual recursion. Omitting this specialized version would work, but

would cause Item 3b to generate useless induction hypotheses that in turn increase the search space

in Item 2c, and thus slow down the automation. Omitting Item 3a would also make the goal less

readable if the user wants to help out with an interactive proof.

Why these rules? The above rules constitute a strategy that can prove logical atomicity of

‘simple’ examples (Design goal #1). We have demonstrated this on the example in Fig. 5, and show a

number of other simple examples in §5. To ensure good integration with interactive proofs (Design

goal #2), we once again minimize the use of backtracking. Backtracking is only needed in Item 6 to

identify the linearization point, just like for refinements. The proof automation is modular (Design

goal #3): Items 4 and 6 are part of the core automation module, Items 1 to 3 are part of the weakest

precondition module, while Item 5 comes in a separate module for proving atomic updates. Similar

to our automation for refinements, we achieve foundational proofs (Design goal #4) by mechanizing

that all rules used in our proof strategy can be derived from Iris’s primitive rules.

4 IMPLEMENTATION AS EXTENSIBLE PROOF STRATEGY
In § 2 and 3 we have seen descriptions of our proof search strategies for contextual refinement and

logical atomicity, respectively. This section discusses their implementation; specifically, how they

fit in the extensible proof automation strategy that underpins Diaframe 2.0.

Proof search strategies operate on Iris entailments Δ ⊢ 𝐺 , where (in our cases) 𝐺 is a refinement

judgment, later or persistence modality (§2), a weakest precondition, or an atomic update (§3). As

we will see in §4.5, rules of these strategies cannot be represented by the automation of Diaframe 1.0.

However, our insight is that each rule in such a strategy falls into one of the following categories:

(1) Rules of the form Δ ⊢ 𝐺 ′ =⇒ (Δ ⊢ 𝐺), and 𝐺 ′ ⊢ 𝐺 is provable.

(2) Rules of the form Δ \ 𝐻 ⊢ 𝐺 ′ =⇒ (Δ ⊢ 𝐺) for some 𝐻 ∈ Δ, and 𝐻 ∗𝐺 ′ ⊢ 𝐺 is provable.

3
This transformation is sound since both sides of the ∧ feature a fancy update |⇛∅ E

with the same mask.
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(3) Rules of the form (Δ′ ⊢ 𝐺 ′) =⇒ (Δ ⊢ 𝐺), where Δ′ and 𝐺 ′ can be calculated from Δ and 𝐺

by just inspecting their head symbols (i.e., modalities).

(4) Rules of the form (Δ ⊢ 𝐺 ′) =⇒ (Δ ⊢ 𝐺), where 𝐺 ′ mentions the entire context Δ.

We repeat a select number of cases of the proof search strategy in § 2 and 3 to make this apparent:

(1) If 𝐺 = wp 𝑒 {Φ} and 𝑒 is a value 𝑣 , continue with Δ ⊢ |⇛⊤ ⊤Φ 𝑣 .
(2) If 𝐺 = ⟨®𝑥 . 𝐿 | 𝑣 .𝑈 ⇛ Φ⟩E , check if 𝐺 ∈ Δ. If so, we can continue with Δ \𝐺 ⊢ True
(3) If 𝐺 = �𝐺 ′, and all hypotheses in Δ are persistent, continue with Δ ⊢ 𝐺 ′. Note that the

entailment 𝐺 ′ ⊢ �𝐺 ′ does not hold. This rule is only valid because of the condition on Δ.
(4) If 𝐺 = ⟨®𝑥 . 𝐿 | 𝑣 .𝑈 ⇛ Φ⟩E , and the above Rule 2 is not applicable, apply au-intro. The new

goal has shape Δ ⊢ |⇛E ?E′∃®𝑥 . 𝐿 ∗
(
(𝐿 −∗ |⇛?E′ EΔ) ∧ (∀𝑣 . 𝑈 −∗ |⇛?E′ E𝐺)

)
. The Δ occurs on

the right-hand-side of the turnstile, so this rule falls outside the first two categories.

We describe a generic proof strategy based on this insight, that can be extended to support new

goals (§4.5). We have implemented this proof strategy in Ltac [Delahaye 2000]. Support for new

goals and proof rules can be added by providing appropriate hints (registered as type class instances

in Coq [Sozeau and Oury 2008]), corresponding to Category 1 to 4. Rules of Category 1 and 2 fit

into our abduction hints (§ 4.1 and 4.2), while rules of Category 3 and 4 fit into our transformer hints
(§4.3). A combination of abduction hints and transformer hints (§4.4) can be used to implement

composite procedures such as Löb induction.

4.1 Abduction Hints
This section defines abduction hints to capture rules in Category 1 and 2:

𝐻 ∗ [𝐺 ′] � 𝐴 ≜ 𝐻 ∗𝐺 ′ ⊢ 𝐴
Here, we give some hypothesis 𝐻 ∈ Δ and current goal 𝐴 as input to type class search, and receive

the new goal 𝐺 ′ as an output, indicated by the square brackets. Given some 𝐻 and 𝐴, we want to

find a ‘good’ new goal𝐺 ′—which might not exist. If a good𝐺 ′ cannot be found, we start the search
again for a different 𝐻 ∈ Δ. We leave ‘good’ undefined, but consider False and 𝐻 −∗ 𝐺 bad choices

since they will make the proof automation get stuck, or loop.

The format of abduction hints directly represents hints of Category 2, but what about Category 1?

Category 1 is encoded by performing a technical trick by Mulder et al. [2022], relying on the fact

that𝐺 ′ ⊢ 𝐴 implies True∗𝐺 ′ ⊢ 𝐴. Since Δ ⊢ True vacuously holds, we can pretend to have True ∈ Δ
for the purpose of fitting Category 1 into Category 2. To account for the case where a priority of

rules is desired (some Category 1 rules should be tried either before or after Category 2 rules), we

define two syntactical markers 𝜀0 ≜ True and 𝜀1 ≜ True. Our proof search strategy will always find

𝜀0 ∈ Δ before any actual hypothesis in Δ, while 𝜀1 ∈ Δ will always be found last. This technique is

similar to techniques by Gonthier et al. [2011], where multiple equivalent definitions are used to

obtain proof automation rules with different priorities.

The proof search strategy proceeds as follows. If our goal is Δ ⊢ 𝐴, use type classes to find 𝐻 ∈ Δ
and 𝐺 ′ such that 𝐻 ∗ [𝐺 ′] � 𝐴. Continue with goal Δ′ ⊢ 𝐺 ′, where Δ′ is obtained from context Δ
by removing 𝐻 , unless 𝐻 is persistent or equal to 𝜀0 or 𝜀1.

As an example, these abduction hints implement two cases of the strategy for logical atomicity:

abduct-wp-val

𝜀0 ∗
[
|⇛⊤ ⊤Φ 𝑣

]
� wp 𝑣 {Φ}

abduct-sym-ex-logatom

⊢ ⟨®𝑥 . 𝐿⟩ 𝑒 ⟨𝑣 .Ψ⟩E
𝜀0 ∗

[〈
®𝑥 . 𝐿 | 𝑣 .𝑈 ⇛ wp 𝐾 [𝑣] {Φ}

〉
⊤\E

]
� wp 𝐾 [𝑒] {Φ}

Both rules will be directly applied (indicated by 𝜀0) if the goal matches the conclusion and the

side-conditions can be solved. After applying a rule, the goal will be replaced by the part between
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square brackets [ and ]. To make Diaframe 2.0 use these hints, one provides type class instances of

above form—which requires a proof of the claimed entailment. Hints thus serve two purposes: they

both implement the proof search strategy and prove it sound.

4.2 Near-applicability
Diaframe 2.0 can apply abduction hints when the logical state or current goal nearly matches a rule.

Let us demonstrate this on the rule rec-apply from §3.3 to apply Löb induction hypotheses. This

rule is monolithic since it takes care of two tasks: apply a weakest precondition below an evaluation

context 𝐾 in the goal, and find a weakest precondition below a magic wand in the context Δ. In the

implementation in Diaframe 2.0, this rule is decomposed in separate hints for each task:

abduct-wp-bind

wp 𝑒 {Φ} ∗
[
∀𝑣 . Φ 𝑣 −∗ wp 𝐾 [𝑣] {Ψ}

]
� wp 𝐾 [𝑒] {Ψ}

abduct-wand

𝐻 ∗ [𝐺 ′] � 𝐺
(𝐿 −∗ 𝐻 ) ∗ [𝐿 ∗𝐺 ′] � 𝐺

The key hypothesiswp 𝑒 {Φ} of abduct-wp-bind does not preciselymatch the induction hypothesis

�(Δ −∗ wp 𝑒 {Φ}) that was generated by Löb. To address this, abduction hints are closed under the

connectives of separation logic by recursive rules such as abduct-wand (similar recursive rules

exist for other connectives of separation logic, e.g., universal quantification). The recursive rules
ensure that every abduction hint 𝐴 ∗ [𝐺 ′] � 𝐺 is not just relevant when 𝐴 ∈ Δ, but also when for

example (𝐻 −∗ 𝐴) ∈ Δ or (𝐻1 −∗ 𝐻2 −∗ (𝐴 ∗ 𝐵)) ∈ Δ.
These two rules also come in handy for situations besides rec-apply. For example, abduct-wand

and similar recursive rules are used for Löb induction in refinement proofs. The abduction hint

abduct-wp-bind is useful when verifying examples with higher-order functions. There, one might

have a specification for a closure in the proof context, and abduct-wp-bind makes it possible to

use this specification in any evaluation context.

4.3 Transformer Hints for Modalities
This section defines transformer hints, which capture rules in Category 3. We show how these

hints support the introduction of the � and ⊲ modalities. Transformer hints come in two flavors—

hypothesis and context transformer hints:
4

𝐻,T →∼hyp [T ′] ≜ T ′ ⊢ (𝐻 −∗ T )

Δ,T →∼ctx [𝐺] ≜ (Δ ⊢ 𝐺) =⇒ (Δ ⊢ T )

Like before, terms between brackets are outputs of type class search, the other terms are inputs. We

use the class T to indicate goals on which transformer hints should be used—this class is disjoint

from ordinary goals𝐺 on which abduction hints should be used. Examples of transformer hints are

the introduction rules for the later (⊲) and persistence (�) modalities:

⊲𝐻, ⊲𝐺
→∼hyp [⊲(𝐻 −∗ 𝐺)]

no 𝐻 ∈ Δ prefixed by ⊲

Δ, ⊲𝐺
→∼ctx [𝐺]

all 𝐻 ∈ Δ are persistent

Δ,�𝐺
→∼ctx [𝐺]

If we are proving a goal of shape Δ ⊢ T , the proof search strategy takes the following steps:

4
Onemight note that a hypothesis transformer hint𝐻, T →∼hyp [T′] is logically equivalent to an abduction hint𝐻∗[T′] � T .
While logically equivalent, these hints are different operationally. Hypothesis transformer hints only act on the head-

symbol/modality of hypothesis 𝐻 , while abduction hints will look beneath connectives of 𝐻 using rules like abduct-wand,

as explained in §4.2.
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(1) Find 𝐻 ∈ Δ and T ′ such that 𝐻,T →∼hyp [T ′]. Continue with goal Δ′ ⊢ T ′, where Δ′ is the
context Δ in which 𝐻 is removed. Unlike abduction hints, 𝐻 is also removed if it is persistent,

and 𝜀0 and 𝜀1 are not detected by these hints.

(2) Otherwise, find 𝐺 such that Δ,T →∼ctx [𝐺]. Continue with goal Δ ⊢ 𝐺 .
One can check that the transformer hints for the later modality first ‘revert’ and strip the later off

of all hypotheses with a later, and only then introduce the later modality.

4.4 Transformer Hints for Other Rules
In §4.3, we saw that transformer hints are flexible enough to support the introduction of modalities.

In this section, we show that transformer hints can be combined with abduction hints to support

rules in Category 4, like au-intro and Löb. Recall our instance of the proof strategy for the

introduction rule for atomic updates from §3.3:

• If 𝐺 = ⟨®𝑥 . 𝐿 | 𝑣 .𝑈 ⇛ Φ⟩E , and 𝐺 does not occur in our environment Δ. Apply au-intro, the

new goal has shape Δ ⊢ |⇛E ?E′∃®𝑥 . 𝐿 ∗
( (
𝐿 −∗ |⇛?E′ EΔ

)
∧

(
∀𝑣 . 𝑈 −∗ |⇛?E′ E𝐺

) )
.

Note that Δ occurs on the right-hand-side of the turnstile, so this rule falls outside the first two

categories. Checking that ⟨®𝑥 . 𝐿 | 𝑣 .𝑈 ⇛ Φ⟩E ∉ Δ is crucial—proof search will otherwise loop on

the goal ⟨®𝑥 . 𝐿 | 𝑣 .𝑈 ⇛ Φ⟩E ⊢ ⟨®𝑥 . 𝐿 | 𝑣 .𝑈 ⇛ Φ⟩E . On such a goal, we want to use the abduction

hint 𝐺 ∗ [True] � 𝐺 , instead of applying au-intro. We therefore add an intermediate form

AUpre ( ®𝑥, 𝛼, 𝑣, 𝛽,Φ, E) ≜ ⟨®𝑥 . 𝛼 | 𝑣 . 𝛽 ⇛ Φ⟩E and a combination of transformer and abduction hints:

au-intro-pre

𝜀1 ∗
[
AUpre ( ®𝑥, 𝛼, 𝑣, 𝛽,Φ, E)

]
� ⟨®𝑥 . 𝛼 | 𝑣 . 𝛽 ⇛ Φ⟩E

au-intro-go

Δ,AUpre ( ®𝑥, 𝛼, 𝑣, 𝛽,Φ, E) →∼ctx
[
|⇛E ?E′∃®𝑥 . 𝛼 ∗ ((𝛼 −∗ |⇛?E′ E 𝐿 ∗ Δ) ∧ (∀𝑣 . 𝛽 −∗ |⇛?E′ EΦ 𝑣))

]
Since au-intro-pre is a last-resort hint (indicated by 𝜀1), we ensure that the assumption hint

𝐺 ∗ [True] � 𝐺 is preferred. After applying au-intro-pre, the proof search strategy tries to

establish AUpre. This will directly find au-intro-go, and enact au-intro.

The collection of these hints gives precisely the required behavior. By introducing a new con-

struct AUpre and giving above hints, we are quite literally ‘programming the proof search’ to act

according to our wishes. A similar approach works for performing Löb induction, where we use

two intermediate goals löbpre (𝐺) ≜ 𝐺 and löbpost (𝐺) ≜ 𝐺 , and the following hints:

(rec 𝑓 𝑥 := 𝑒) performs recursion, i.e., 𝑓 ∈ FV(𝑒)
𝜀1 ∗

[
löbpre

(
wp ((rec 𝑓 𝑥 := 𝑒) 𝑣) {Φ}

) ]
� wp ((rec 𝑓 𝑥 := 𝑒) 𝑣) {Φ}

Δ, löbpre (𝐺) →∼ctx
[
(⊲�(Δ −∗ 𝐺)) −∗ löbpost (𝐺)

]
𝜀0 ∗

[
⊲wp 𝑒 [(rec 𝑓 𝑥 := 𝑒)/𝑓 ] [𝑣/𝑥] {Φ}

]
� löbpost

(
wp ((rec 𝑓 𝑥 := 𝑒) 𝑣) {Φ}

)
By delegating Löb induction to the löbpre and löbpost constructs, we can easily reuse the procedure

for refinement judgments. We simply need to add variants of the first and third hint for the

refinement judgment. The second hint we can reuse because it is generic in the goal 𝐺 . This

modularity is useful for the full-blown version of automatic Löb induction in the supplementary

material. The full-blown version generalizes over variables and thus has a more sophisticated

version of the second hint.
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4.5 Overview of the Proof Search Strategy
We now give a more formal description of the proof search strategy that underpins Diaframe 2.0. It

acts on goals of the form Δ ⊢ 𝐺 , where 𝐺 is defined roughly according to the following grammar:

atoms 𝐴 ::= . . .

transformers T ::= . . .

left-goals 𝐿 ::= ⌜𝜙⌝ | 𝐴 | 𝐿 ∗ 𝐿 | ∃𝑥 . 𝐿
unstructureds 𝑈 ::= ⌜𝜙⌝ | 𝐴 | 𝑈 ∗𝑈 | ∃𝑥 . 𝐿 | ∀𝑥 . 𝑈 | 𝐿 −∗ 𝑈 | |⇛E1 E2𝑈

goals 𝐺 ::= ∀𝑥 . 𝐺 | 𝑈 −∗ 𝐺 | 𝐴 | |⇛E1 E2 ∃®𝑥 . 𝐿 ∗𝐺 | T

To prove Δ ⊢ 𝐺 , the strategy proceeds by case analysis on 𝐺 :

(1) 𝐺 = ∀𝑥 . 𝐺 ′. Introduce variable 𝑥 and continue.

(2) 𝐺 = 𝑈 −∗ 𝐺 ′. Introduce 𝑈 into the context and similar to Diaframe 1.0, ‘clean’ it. That is,

eliminate existentials, disjunctions and separating conjunctions.

(3) 𝐺 = 𝐴. Look for an abduction hint from some 𝐻 ∈ Δ to 𝐴. That is, find a side-condition 𝐺 ′

such that 𝐻 ∗ [𝐺 ′] � 𝐴. Continue with Δ \ 𝐻 ⊢ 𝐺 ′.
(4) 𝐺 = |⇛E1 E2 ∃®𝑥 . 𝐿 ∗ 𝐺 ′. Use the existing procedure of Diaframe 1.0 [Mulder et al. 2022] to

solve these goals. Roughly, that is, first, use associativity of ∗ to obtain either:

(a) 𝐿 = ⌜𝜙⌝. Prove ∃®𝑥 . 𝜙 , then continue with proving 𝐺 ′.
(b) 𝐿 = 𝐴. Now, find a bi-abduction hint from some 𝐻 ∈ Δ to 𝐴. That is, find a side-condition

𝐿′ and residue 𝑈 such that ∀®𝑦. 𝐻 ∗ 𝐿 ⊢ |⇛E3 E2 ∃®𝑥 . 𝐴 ∗𝑈 . Our new goal will be of shape

Δ \ 𝐻 ⊢ |⇛E1 E3 ∃®𝑦. 𝐿′ ∗ (∀®𝑥 . 𝑈 −∗ 𝐺 ′), which also fits our grammar.

(5) 𝐺 = T . Try the following, in order:

(a) Find 𝐻 ∈ Δ and T ′ such that 𝐻,T →∼hyp [T ′]. Continue with goal Δ \ 𝐻 ⊢ T ′.
(b) Otherwise, find 𝐺 ′ such that Δ,T →∼ctx [𝐺 ′]. Continue with goal Δ ⊢ 𝐺 ′.

Diaframe 1.0 vs Diaframe 2.0. There are two main reasons why Diaframe 1.0’s bi-abduction

hints cannot express the proof search strategies from § 2.3 and 3.3. Firstly, context transformer

hints (Item 5b) have a shape that is simply incompatible with Item 4b. Secondly, the side-conditions

of abduction hints are in𝐺 , while those of bi-abduction hints are in 𝐿. Goals 𝐺 are strictly more

flexible than left-goals 𝐿, giving abduction hints the additional power to express proof strategies

for program specification styles. One could attempt to extend the grammar of 𝐿, but then we risk

ending up in a goal of shape (∀𝑥 . 𝐺1) ∗ (∀𝑦. 𝐺2) after Item 4b, causing the proof search to get stuck.

5 EVALUATION
We evaluate our proof automation on four sets of benchmarks. To evaluate Design goal #1, we

compare to Voila [Wolf et al. 2021]—a proof outline checker for logical atomicity (§5.1). We discuss

the differences in the underpinned logics, and the performance and proof burden of the proof

automation of both tools. To evaluate Design goal #2, we redo some of the trickier examples in the

Iris literature: an elimination stack, and Harris et al. [2002]’s RDCSS (restricted double-compare

single-swap) (§ 5.2). Besides reverifying existing examples, we use our results to verify logical

atomicity of the Michael-Scott queue [Michael and Scott 1996] (§5.3). This queue is known to be

linearizable, but we are not aware of a mechanized proof of logical atomicity. For refinements in

concurrent separation logic there exist—to the best of our knowledge—no existing semi-automated

tools. We thus compare to existing interactive proofs done in ReLoC (§5.4).
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name impl total time proof Voila total Voila proof

bag stack 30 142 1:13 53 220 74

bounded counter 20 61 0:32 6 86 19

cas counter 20 46 0:24 0 98 24

fork join 14 43 0:21 0 64 17

fork join client 13 46 0:20 0 134 35

inc dec counter 22 52 0:31 0 111 26

spin lock 13 56 0:16 0 71 17

ticket lock 17 74 1:12 4 112 27

ticket lock client 7 29 0:39 0 91 17

total 156 549 5:28 63 987 246

Fig. 7. Data on examples with logical atomicity, in comparison with Voila. Rows correspond to files in the
supplementary artifact [Mulder and Krebbers 2023]. Columns contain information on lines of implementation,
total amount of lines, average verification time in minutes:seconds, and lines of proof burden, also for Voila.

5.1 Comparison to Logical Atomicity Proofs in Voila
We verify the 9 examples from Voila’s evaluation suite in Diaframe 2.0. Details can be found in

Fig. 7. There are some differences between Voila and Diaframe 2.0 that are important to point

out. Voila is based on the TaDa logic [da Rocha Pinto 2016; da Rocha Pinto et al. 2014], whose

notion of logical atomicity inspired that of Iris, but is slightly different. To give a specification for

a logically atomic triple in TaDa, one needs to define an abstraction around the resources, in the

form of a region (akin to an invariant in Iris). This is not always required in Iris, which makes our

specifications of e.g., cas counter and inc dec counter a lot shorter.

Another difference is that Diaframe 2.0 is foundational (built in a proof assistant), while Voila is

non-foundational. The main difference between foundational and non-foundational verification

lies in the size of the Trusted Computing Base (TCB). Non-foundational tools typically have a large

TCB, which may include external solvers, the bespoke program logic that underpins the tool, and

the implementation of the proof automation. Foundational tools typically have a small TCB: just

the definition of the operational semantics and the kernel of the proof assistant, the program logic

and the proof automation need not be trusted.

Finally, Voila is a proof outline checker, requiring the user to specify key steps in the proof of a

logically atomic triple. In particular, one needs to specify when regions or atomic specifications

need to be used, and when the linearization point happens. This offers an improvement over fully

interactive proofs, but does not achieve the degree of automation Diaframe 2.0 provides—for all but

2 examples, we can find the linearization point automatically. Wolf et al. [2021] explicitly do not

attempt to build an automated verifier for logical atomicity, about which they remark:

Automated verifiers, on the other hand, significantly reduce the proof effort,

but compromise on expressiveness and require substantial development effort,

especially, to devise custom proof search algorithms. It is in principle possible

to increase the automation of proof checkers by developing proof tactics, or to

increase the expressiveness of automated verifiers by developing stronger custom

proof search algorithms. However, such developments are too costly for the

vast majority of program logics, which serve mostly a scientific or educational

purpose.

We summarize aggregated data from Fig. 7. On average, Diaframe 2.0 has ca. 0.4 lines of proof

burden per line of implementation (63 lines of proof burden on 156 lines of implementation), while
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name impl total time proof IPM total IPM proof

rdcss 50 422 6:42 63 689 294

elimination stack 50 239 4:56 58 375 180

msc queue 51 427 8:30 168

Fig. 8. Data on examples with logical atomicity, in comparison with Iris Proof Mode (IPM) proofs.

Voila has, in our count, 1.7 lines of proof burden per line of implementation.
5
The total proof

burden over these 9 examples is reduced by a factor of about 4, from 246 lines in Voila to 63 lines in

Diaframe 2.0. For 6 out of the 9 examples, the logically atomic triples can be verified by Diaframe

2.0 without any help from the user. This shows we achieve Design goal #1—full automation for

‘simple’ proofs of logical atomicity. The other three examples require some help for arithmetic

modulo 𝑛 (bounded counter), case distinctions which need to be performed at a specific place in

the proof (ticket lock and bag stack), or custom hints with non-automatable proofs (bag stack).

5.2 Comparison to Complex Interactive Logical Atomicity Proofs in Iris
To ensure Diaframe 2.0 is usable in interactive proofs of ‘complex’ programs (Design goal #2), we

partially automate two existing interactive proofs in Iris. The results are shown in Fig. 8. Since these

examples are challenging—both feature “helping”, where the linearization point is delegated to

another thread—full proof automation is not achieved. The proof burden was reduced by a factor of

4. We found that some intermediate lemmas were no longer necessary, as their effects were applied

automatically. Most of the ‘easier’ parts of the verifications of these programs (such as recursive

calls on a failing CAS) could be completely discharged by Diaframe 2.0. This allowed us to focus

on the interesting part of the verification. In these examples, we have seen 4 patterns where the

proof automation may need assistance: (a) linearization points for operations that do not logically

alter the state, (b) case distinctions whose necessity requires ‘foresight’/human intuition, (c) pure

side-conditions that are too hard for Diaframe, (d) mutation rules of recursive data structures.

Items (c) and (d) can sometimes be overcome through appropriate hints in Diaframe 1.0. We leave

good proof automation for Items (a) and (b) for future work. Vafeiadis [2010] also points out that

Item (a) is very difficult in the context of CAVE.

5.3 Experiences Verifying Logical Atomicity of the Michael-ScottQueue
To evaluate the applicability of our proof automation on new proofs, we verify logical atomicity

of the Michael-Scott queue. To our knowledge, this is a novel result. Contextual refinement is

established by Vindum and Birkedal [2021], but logical atomicity is stronger and implies contextual

refinement (we have worked this out in more detail in our artifact [Mulder and Krebbers 2023]).

Our proof reuses some of their techniques (the persistent maps-to predicate), but represents the

queue data structure invariant differently—in a way that is both natural, and allows suitable hints

for mutating the queue. After establishing hints and pure automation for this data structure, most

of the separation-logic reasoning can be dealt with automatically. The remaining proof burden

consists of dealing with prophecy variables [Jung et al. 2020], for which our automation has partial

support, and establishing pure facts outside of the reach of our automation—for this example,

reasoning about lists without duplicates.

5
Wolf et al. [2021] report 0.8 line of proof annotation per line of code in Voila, which Diaframe 2.0 still improves on by a

factor 2. We consider lines with explicit calls to open/close regions, and explicit uses of atomic specifications as proof work

in Voila. It is unclear what counting metric is used by Wolf et al. [2021].
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name impl total time proof
interactive

total

interactive

proof

bit 10 33 0:04 3 44 14

cell 27 64 0:31 4 128 68

coinflip 48 118 1:56 25 319 230

counter 19 65 0:25 5 225 63

lateearlychoice 26 88 0:22 16 129 62

namegen 9 70 0:11 26 112 68

Treiber stack ≾ stack with lock 46 136 1:02 36 185 124

symbol 28 112 1:38 27 376 234

ticket lock ≾ spin lock 17 85 0:59 7 266 120

various 54 158 3:34 30 582 372

total 284 929 10:42 179 2366 1355

Fig. 9. Statistics on proof automation for ReLoC. Each row contains the name of the verified example, lines of
implementation, total amount of lines, verification time in minutes:seconds, and lines of proof burden—also
for the original, interactively constructed version of the example.

Challenging verifications like this will usually not be successful the first time, and some amount

of time must be spent figuring out the reason for failure. Three typical problems occur during failed

verifications: (a) faulty specifications or invariants (b) missing or faulty hints for ghost resources or

recursive data structures (c) the default proof search strategy is not sufficient. The general approach

for debugging these problems is to let Diaframe 2.0 perform a fixed number of automation steps,

instead of letting it run until it gets stuck. This allows the user to determine when the strategy

takes a wrong turn, and act accordingly: change invariants, add hints, or manually perform a part

of the proof. Diaframe 2.0 provides some tools for debugging a failing type class search for hints.

5.4 Comparison to Interactive Refinement Proofs in ReLoC
We evaluate our automation on 10 out of the 13 concrete examples from the ReLoC repository. The

3 remaining examples feature “helping”, which is currently unsupported by our refinement proof

automation. Statistics on the examples can be found in Fig. 9. The proof of ticket lock ≾ spin lock

differs slightly from the original proof: instead of relying on ReLoC’s logically atomic relational
specifications, we use Iris’s regular logically atomic specifications (§3) for the same effect.

6

We summarize some aggregated data from Fig. 9. On average, the proof size is reduced by

a factor of 7 (179 vs 1355 lines of proof burden), coming down to 0.6 line of proof burden per

line of implementation. For the largest refinement example, which proves that the Treiber stack

contextually refines a course grained stack, we still reduce the proof size by over a factor of 3.

Assistance from the user is required in the same cases as those discussed in §5.2. Additionally, it

may be necessary to manually establish an invariant like in §2, or to manually perform right-hand

side execution. A tactic iStepR is available for this last case.

6 RELATEDWORK
Viper. Viper [Müller et al. 2016] is a non-foundational tool for automated verification using

separation logic. Viper provides a common verification language, which is used as a backend of

verification tools for a number of different program specification styles. Aside from functional

6
We believe it is folklore that logically atomic triples can be used in refinement proofs, but have not seen it worked out. In

the implementation, this requires adding a slightly altered version of atomic updates, and accompanying hints.
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correctness, Viper is used for logical atomicity in the TaDA logic [Wolf et al. 2021] (called Voila)

and the security condition non-interference [Eilers et al. 2021]. An extensive comparison between

Voila and our automation for logical atomicity can be found in §5.1. In summary, we show an

average proof size reduction by a factor 4, and we support more complicated examples (RDCCS,

elimination stack, and the Michael-Scott queue).

With regard to extensibility, Viper has the same goal as Diaframe 2.0—to provide a common

verification backend that can handle multiple specification styles. There are some notable differences

that make the two approaches difficult to compare in detail. First, Viper targets non-foundational

verification instead of foundational verification in a proof assistant (see §5.1 for a discussion on

the differences). Second, the embedding into Viper’s verification language is a syntactic program

transformation that is performed before verification, while Diaframe 2.0 operates directly on

program specifications during the verification. Third, Viper uses separation logic based on implicit

dynamic frames [Parkinson and Summers 2011], which is different from Iris’s separation logic.

Automated linearizability checkers. CAVE [Henzinger et al. 2013; Vafeiadis 2010], Poling

[Zhu et al. 2015] and Line-up [Burckhardt et al. 2010] are automated non-foundational tools for

establishing linearizability. CAVE uses shape analysis to find linearization points, and Line-up uses

model checking to refute linearizability. Poling extends CAVEwith support for external linearization

points. These tools use the trace-based formulation of linearizability [Herlihy and Wing 1990],

which is less compositional than contextual refinement and logical atomicity. Poling does not

support future-dependent linearization points, which are present in algorithms such as RDCSS

and the Michael-Scott queue, and Line-up does not support non-deterministic concurrent data

structures. The advantage of restricting supported target programs is that these tools do not need

much user assistance.

Verified concurrent search data structures. Krishna et al. [2020, 2021] develop methods to

prove logical atomicity of a particular class of concurrent algorithms: concurrent search structures.

Their key idea is to subdivide the verification of a data structure into two parts: the verification

of a template algorithm and verifying that a data structure is an instance of the template. The

verification of the template algorithm is done interactively in Iris using the Iris Proof Mode. The

template-instance verification is done automatically using the tool GRASShopper [Piskac et al.

2014]. This work is thus only partly foundational. To obtain a full foundational proof, it would be

interesting to investigate if our work could be used to automate the verification of the instances

currently done using GRASShopper.

Automated verifiers for concurrent refinements. Civl [Hawblitzel et al. 2015; Kragl and
Qadeer 2021] is an automated tool for establishing refinement of concurrent programs. Their

approach is based on establishing multiple layers of refinement, where each layer simplifies and

refines the previous layer. By employing the Boogie verifier [Barnett et al. 2005], Civl can auto-

matically prove these layered refinements—although inductive invariants and non-interference

conditions need to be specified by the user. This approach has also been shown to scale to larger

examples: in particular, Civl has been used to verify a concurrent garbage collector of significant

size. Civl focuses on refinements in general, and not on linearizability in particular. Linearizability

has been established for e.g., the Treiber stack [Treiber 1986], but not for more complex examples

such as the Michael-Scott queue.

Other logics for linearizability. Our work builds upon Iris, which consolidates prior work on

logical atomicity and refinements in separation logic [da Rocha Pinto et al. 2014; Dreyer et al. 2010;

Jacobs and Piessens 2011; Svendsen et al. 2013; Turon et al. 2013]. Aside from Iris, there are a number

of other expressive logics for linearizability that employ different approaches to compositionality.
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While none of this work addresses the challenge of automating linearizability proofs, we briefly

discuss some of this work. FCSL [Nanevski et al. 2019; Sergey et al. 2015] is a Coq-based separation

logic, where linearizability can be established by keeping track of timestamped histories. Liang

and Feng [2013] have designed a program logic based on rely-guarantee for proving linearizability.

They can handle challenging examples (such as RDCSS), but their proofs are not mechanized in a

proof assistant. Kim et al. [2017] verify linearizability and liveness of a C implementation of an

MCS lock using the certified concurrent abstraction layer framework in Coq [Gu et al. 2015].

7 FUTUREWORK
We would like to improve the usability of Diaframe 2.0. As can be seen in Fig. 2, variable names

are automatically generated by Coq. This can make it difficult to relate generated Coq goals to

the program subject to verification. A further improvement would be to avoid interaction with

Coq altogether by using annotations in source code, akin to auto-active verification tools [Leino

and Moskal 2010]. RefinedC [Sammler et al. 2021] demonstrates that a proof strategy in Iris can be

used as a backend for a foundational auto-active tool for functional correctness. For refinement

and logical atomicity it is currently unclear what suitable annotations would look like.

We focused on automating the separation logic part of refinement and logical atomicity proofs.

To automate the pure conditions that arise in the verification, we use standard solvers from Coq

such as lia and set solver. It would be interesting to investigate if recent approaches to improve

pure automation Coq could be incorporated [Besson 2021; Czajka 2020; Ekici et al. 2017].

We focused on proof strategies for refinement and logical atomicity, but we conjecture that

the generic Diaframe 2.0 strategy is more widely applicable. We would like to instantiate it with

other logics and languages. We have some initial experiments for Similuris [Gäher et al. 2022] and

𝜆-rust [Jung et al. 2018a]. Languages like Georges et al. [2022]’s capability machines, and logics like

VST (which Mansky [2022] has recently ported to the Iris Proof Mode, and also supports logical

atomicity) are also interesting targets. Finally, it would be interesting to investigate automation for

recent work by Dang et al. [2022] on logical atomicity under weak memory.

Asmentioned in the evaluation (§5), our proof automation cannot always automatically determine

the required case distinctions for a proof. Additionally, we rely on backtracking to determine

linearization points. A recent extension of Diaframe [Mulder et al. 2023] provides better support

for disjunctions and avoids backtracking, which could address these problems.
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